Myocardial T1 values in healthy volunteers measured with saturation method using adaptive recovery times for T1 mapping (SMART1Map) at 1.5 ... View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04-11

AUTHORS

Shunsuke Matsumoto, Shigeo Okuda, Yoshitake Yamada, Tatsuya Suzuki, Akihiro Tanimoto, Atsushi Nozaki, Masahiro Jinzaki

ABSTRACT

Myocardial T1 mapping is clinically valuable for assessing the myocardium, and modified look-locker inversion-recovery (MOLLI) approaches have been commonly used for measuring myocardial T1 values. To date, several other sequences have been developed for measuring myocardial T1 values, and saturation-recovery-based sequences have been shown to be less dependent on various factors, such as T2 times and magnetization transfer, than inversion-recovery techniques. Systematic differences in T1 values between different sequences have been reported; therefore, definition of the normal range of native T1 values is required before clinical usage can begin. The purpose of this study was to evaluate the reference range and sex dependency of native T1 values in the myocardium measured using one such saturation-recovery sequence, i.e., saturation method using adaptive recovery times for cardiac T1 mapping (SMART1Map). Myocardial T1 values were compared between SMART1Map and MOLLI in 24 young healthy volunteers at 1.5 T and 3 T, and differences in the T1 values between the sexes were assessed. The mean native T1 values in the myocardium were significantly longer with SMART1Map than MOLLI [1530.4 ± 49.2 vs 1222.1 ± 48.9 ms at 3 T (p < 0.001) and 1227.3 ± 41.9 ms vs 1014.8 ± 49.4 ms at 1.5 T (p < 0.001)]. A significant difference between the sexes was observed in the T1 values obtained using each sequence, excluding SMART1Map at 3 T. The SMART1Map has a potential advantage to overcome the shortcoming of MOLLI, which underestimates T1 values; however, the sex-dependent difference remains obscure using SMART1Map. More... »

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00380-019-01401-5

DOI

http://dx.doi.org/10.1007/s00380-019-01401-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1113378520

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30976924


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Keio University", 
          "id": "https://www.grid.ac/institutes/grid.26091.3c", 
          "name": [
            "Department of Radiology, Keio University School of Medicine, 35 Shinanomachi, Shinjyuku-ku, Tokyo, 160-8582, Japan."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Matsumoto", 
        "givenName": "Shunsuke", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Keio University", 
          "id": "https://www.grid.ac/institutes/grid.26091.3c", 
          "name": [
            "Department of Radiology, Keio University School of Medicine, 35 Shinanomachi, Shinjyuku-ku, Tokyo, 160-8582, Japan. okuda@rad.med.keio.ac.jp."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Okuda", 
        "givenName": "Shigeo", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Keio University", 
          "id": "https://www.grid.ac/institutes/grid.26091.3c", 
          "name": [
            "Department of Radiology, Keio University School of Medicine, 35 Shinanomachi, Shinjyuku-ku, Tokyo, 160-8582, Japan."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yamada", 
        "givenName": "Yoshitake", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Keio University", 
          "id": "https://www.grid.ac/institutes/grid.26091.3c", 
          "name": [
            "Department of Radiology, Keio University School of Medicine, 35 Shinanomachi, Shinjyuku-ku, Tokyo, 160-8582, Japan."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Suzuki", 
        "givenName": "Tatsuya", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Keio University", 
          "id": "https://www.grid.ac/institutes/grid.26091.3c", 
          "name": [
            "Department of Radiology, Keio University School of Medicine, 35 Shinanomachi, Shinjyuku-ku, Tokyo, 160-8582, Japan."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tanimoto", 
        "givenName": "Akihiro", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "General Electric (Japan)", 
          "id": "https://www.grid.ac/institutes/grid.481637.f", 
          "name": [
            "MR Applications and Workflow, GE Healthcare Japan, 4-7-127, Asahigaoka, Hino-shi, Tokyo, Japan."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nozaki", 
        "givenName": "Atsushi", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Keio University", 
          "id": "https://www.grid.ac/institutes/grid.26091.3c", 
          "name": [
            "Department of Radiology, Keio University School of Medicine, 35 Shinanomachi, Shinjyuku-ku, Tokyo, 160-8582, Japan."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jinzaki", 
        "givenName": "Masahiro", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1186/1532-429x-14-64", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002584485", 
          "https://doi.org/10.1186/1532-429x-14-64"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/rg.342125121", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004231884"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1532-429x-15-13", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007930749", 
          "https://doi.org/10.1186/1532-429x-15-13"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.24878", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012132258"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.25217", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013916977"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.25217", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013916977"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1532-429x-14-27", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014145175", 
          "https://doi.org/10.1186/1532-429x-14-27"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.13131225", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017217090"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jacc.2013.05.078", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021816205"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1532-429x-15-56", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024598134", 
          "https://doi.org/10.1186/1532-429x-15-56"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1532-429x-15-78", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027688149", 
          "https://doi.org/10.1186/1532-429x-15-78"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1532-429x-15-63", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028139125", 
          "https://doi.org/10.1186/1532-429x-15-63"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1532-429x-16-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033256742", 
          "https://doi.org/10.1186/1532-429x-16-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.23875", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033392350"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12968-016-0286-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033566144", 
          "https://doi.org/10.1186/s12968-016-0286-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12968-016-0286-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033566144", 
          "https://doi.org/10.1186/s12968-016-0286-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12968-016-0302-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034842369", 
          "https://doi.org/10.1186/s12968-016-0302-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12968-016-0302-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034842369", 
          "https://doi.org/10.1186/s12968-016-0302-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12968-014-0069-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035852489", 
          "https://doi.org/10.1186/s12968-014-0069-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/eurheartj/ehr481", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036767620"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/ehjci/jet245", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045410158"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1532-429x-15-53", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048448907", 
          "https://doi.org/10.1186/1532-429x-15-53"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.20110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050456372"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.14140296", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053014118"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1532-429x-17-s1-w20", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053101628", 
          "https://doi.org/10.1186/1532-429x-17-s1-w20"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1532-429x-15-s1-p3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083681855", 
          "https://doi.org/10.1186/1532-429x-15-s1-p3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-017-4845-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085179011", 
          "https://doi.org/10.1007/s00330-017-4845-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-017-4845-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085179011", 
          "https://doi.org/10.1007/s00330-017-4845-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2463/mrms.mp.2016-0092", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085430921"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12968-017-0371-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091875829", 
          "https://doi.org/10.1186/s12968-017-0371-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/ehjci/jey034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101211565"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/ehjci/jey034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101211565"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.26160", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104545791"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04-11", 
    "datePublishedReg": "2019-04-11", 
    "description": "Myocardial T1 mapping is clinically valuable for assessing the myocardium, and modified look-locker inversion-recovery (MOLLI) approaches have been commonly used for measuring myocardial T1 values. To date, several other sequences have been developed for measuring myocardial T1 values, and saturation-recovery-based sequences have been shown to be less dependent on various factors, such as T2 times and magnetization transfer, than inversion-recovery techniques. Systematic differences in T1 values between different sequences have been reported; therefore, definition of the normal range of native T1 values is required before clinical usage can begin. The purpose of this study was to evaluate the reference range and sex dependency of native T1 values in the myocardium measured using one such saturation-recovery sequence, i.e., saturation method using adaptive recovery times for cardiac T1 mapping (SMART1Map). Myocardial T1 values were compared between SMART1Map and MOLLI in 24 young healthy volunteers at 1.5\u00a0T and 3\u00a0T, and differences in the T1 values between the sexes were assessed. The mean native T1 values in the myocardium were significantly longer with SMART1Map than MOLLI [1530.4\u2009\u00b1\u200949.2 vs 1222.1\u2009\u00b1\u200948.9\u00a0ms at 3\u00a0T (p\u2009<\u20090.001) and 1227.3\u2009\u00b1\u200941.9\u00a0ms vs 1014.8\u2009\u00b1\u200949.4\u00a0ms at 1.5\u00a0T (p\u2009<\u20090.001)]. A significant difference between the sexes was observed in the T1 values obtained using each sequence, excluding SMART1Map at 3\u00a0T. The SMART1Map has a potential advantage to overcome the shortcoming of MOLLI, which underestimates T1 values; however, the sex-dependent difference remains obscure using SMART1Map.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00380-019-01401-5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1095887", 
        "issn": [
          "0910-8327", 
          "1615-2573"
        ], 
        "name": "Heart and Vessels", 
        "type": "Periodical"
      }
    ], 
    "name": "Myocardial T1 values in healthy volunteers measured with saturation method using adaptive recovery times for T1 mapping (SMART1Map) at 1.5\u00a0T and 3\u00a0T.", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00380-019-01401-5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1113378520"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "8511258"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30976924"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00380-019-01401-5", 
      "https://app.dimensions.ai/details/publication/pub.1113378520"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-16T06:24", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000377_0000000377/records_106831_00000003.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s00380-019-01401-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00380-019-01401-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00380-019-01401-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00380-019-01401-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00380-019-01401-5'


 

This table displays all metadata directly associated to this object as RDF triples.

196 TRIPLES      20 PREDICATES      52 URIs      16 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00380-019-01401-5 schema:about anzsrc-for:11
2 anzsrc-for:1103
3 schema:author N342e1799a3474631a79556759d41396c
4 schema:citation sg:pub.10.1007/s00330-017-4845-5
5 sg:pub.10.1186/1532-429x-14-27
6 sg:pub.10.1186/1532-429x-14-64
7 sg:pub.10.1186/1532-429x-15-13
8 sg:pub.10.1186/1532-429x-15-53
9 sg:pub.10.1186/1532-429x-15-56
10 sg:pub.10.1186/1532-429x-15-63
11 sg:pub.10.1186/1532-429x-15-78
12 sg:pub.10.1186/1532-429x-15-s1-p3
13 sg:pub.10.1186/1532-429x-16-2
14 sg:pub.10.1186/1532-429x-17-s1-w20
15 sg:pub.10.1186/s12968-014-0069-x
16 sg:pub.10.1186/s12968-016-0286-6
17 sg:pub.10.1186/s12968-016-0302-x
18 sg:pub.10.1186/s12968-017-0371-5
19 https://doi.org/10.1002/jmri.23875
20 https://doi.org/10.1002/jmri.25217
21 https://doi.org/10.1002/jmri.26160
22 https://doi.org/10.1002/mrm.20110
23 https://doi.org/10.1002/mrm.24878
24 https://doi.org/10.1016/j.jacc.2013.05.078
25 https://doi.org/10.1093/ehjci/jet245
26 https://doi.org/10.1093/ehjci/jey034
27 https://doi.org/10.1093/eurheartj/ehr481
28 https://doi.org/10.1148/radiol.13131225
29 https://doi.org/10.1148/radiol.14140296
30 https://doi.org/10.1148/rg.342125121
31 https://doi.org/10.2463/mrms.mp.2016-0092
32 schema:datePublished 2019-04-11
33 schema:datePublishedReg 2019-04-11
34 schema:description Myocardial T1 mapping is clinically valuable for assessing the myocardium, and modified look-locker inversion-recovery (MOLLI) approaches have been commonly used for measuring myocardial T1 values. To date, several other sequences have been developed for measuring myocardial T1 values, and saturation-recovery-based sequences have been shown to be less dependent on various factors, such as T2 times and magnetization transfer, than inversion-recovery techniques. Systematic differences in T1 values between different sequences have been reported; therefore, definition of the normal range of native T1 values is required before clinical usage can begin. The purpose of this study was to evaluate the reference range and sex dependency of native T1 values in the myocardium measured using one such saturation-recovery sequence, i.e., saturation method using adaptive recovery times for cardiac T1 mapping (SMART1Map). Myocardial T1 values were compared between SMART1Map and MOLLI in 24 young healthy volunteers at 1.5 T and 3 T, and differences in the T1 values between the sexes were assessed. The mean native T1 values in the myocardium were significantly longer with SMART1Map than MOLLI [1530.4 ± 49.2 vs 1222.1 ± 48.9 ms at 3 T (p < 0.001) and 1227.3 ± 41.9 ms vs 1014.8 ± 49.4 ms at 1.5 T (p < 0.001)]. A significant difference between the sexes was observed in the T1 values obtained using each sequence, excluding SMART1Map at 3 T. The SMART1Map has a potential advantage to overcome the shortcoming of MOLLI, which underestimates T1 values; however, the sex-dependent difference remains obscure using SMART1Map.
35 schema:genre research_article
36 schema:inLanguage en
37 schema:isAccessibleForFree false
38 schema:isPartOf sg:journal.1095887
39 schema:name Myocardial T1 values in healthy volunteers measured with saturation method using adaptive recovery times for T1 mapping (SMART1Map) at 1.5 T and 3 T.
40 schema:productId N256c8bbfd5f94671bdf7490caf54ffff
41 N2ef82d54fe184d1bab391e8f735c788c
42 N6d5abbb18ce344f58109338f346b802e
43 Na00e8468bad443c2a1ad81418fd43461
44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113378520
45 https://doi.org/10.1007/s00380-019-01401-5
46 schema:sdDatePublished 2019-04-16T06:24
47 schema:sdLicense https://scigraph.springernature.com/explorer/license/
48 schema:sdPublisher Nc39d18389451458f860e0590dd67bf3d
49 schema:url http://link.springer.com/10.1007/s00380-019-01401-5
50 sgo:license sg:explorer/license/
51 sgo:sdDataset articles
52 rdf:type schema:ScholarlyArticle
53 N0562b562b72944ad867dd4537fe1ec01 schema:affiliation https://www.grid.ac/institutes/grid.26091.3c
54 schema:familyName Okuda
55 schema:givenName Shigeo
56 rdf:type schema:Person
57 N24a6c289893d40138e49e84d35cef2be rdf:first Nb4a6670c26cd4b59909f8ffdfcd8c4e9
58 rdf:rest Nf2d96066ea024dcbb470152e8063bb3e
59 N256c8bbfd5f94671bdf7490caf54ffff schema:name dimensions_id
60 schema:value pub.1113378520
61 rdf:type schema:PropertyValue
62 N2ef82d54fe184d1bab391e8f735c788c schema:name pubmed_id
63 schema:value 30976924
64 rdf:type schema:PropertyValue
65 N342e1799a3474631a79556759d41396c rdf:first N43ead6b91ae14b719298da325fb59b84
66 rdf:rest N8c55be74263a41008675024473915615
67 N43ead6b91ae14b719298da325fb59b84 schema:affiliation https://www.grid.ac/institutes/grid.26091.3c
68 schema:familyName Matsumoto
69 schema:givenName Shunsuke
70 rdf:type schema:Person
71 N6d5abbb18ce344f58109338f346b802e schema:name nlm_unique_id
72 schema:value 8511258
73 rdf:type schema:PropertyValue
74 N74baaa4f55c84ec8a29171224c6aaecb schema:affiliation https://www.grid.ac/institutes/grid.26091.3c
75 schema:familyName Suzuki
76 schema:givenName Tatsuya
77 rdf:type schema:Person
78 N79825aa26c3e418ebade935855a3157a rdf:first N940ea2432b764eb4961bd9d6bdb59144
79 rdf:rest Nf174be90c045400a8ebe6a1d88aa9cf2
80 N8c55be74263a41008675024473915615 rdf:first N0562b562b72944ad867dd4537fe1ec01
81 rdf:rest N79825aa26c3e418ebade935855a3157a
82 N940ea2432b764eb4961bd9d6bdb59144 schema:affiliation https://www.grid.ac/institutes/grid.26091.3c
83 schema:familyName Yamada
84 schema:givenName Yoshitake
85 rdf:type schema:Person
86 N9eb62157987546ff9c9406168ed09c50 rdf:first Nd005932d499342a8a5d468d94ac6abe8
87 rdf:rest N24a6c289893d40138e49e84d35cef2be
88 Na00e8468bad443c2a1ad81418fd43461 schema:name doi
89 schema:value 10.1007/s00380-019-01401-5
90 rdf:type schema:PropertyValue
91 Nb4a6670c26cd4b59909f8ffdfcd8c4e9 schema:affiliation https://www.grid.ac/institutes/grid.481637.f
92 schema:familyName Nozaki
93 schema:givenName Atsushi
94 rdf:type schema:Person
95 Nc39d18389451458f860e0590dd67bf3d schema:name Springer Nature - SN SciGraph project
96 rdf:type schema:Organization
97 Nd005932d499342a8a5d468d94ac6abe8 schema:affiliation https://www.grid.ac/institutes/grid.26091.3c
98 schema:familyName Tanimoto
99 schema:givenName Akihiro
100 rdf:type schema:Person
101 Nf174be90c045400a8ebe6a1d88aa9cf2 rdf:first N74baaa4f55c84ec8a29171224c6aaecb
102 rdf:rest N9eb62157987546ff9c9406168ed09c50
103 Nf2d96066ea024dcbb470152e8063bb3e rdf:first Nf3e192d014494bf0a01d160194b65027
104 rdf:rest rdf:nil
105 Nf3e192d014494bf0a01d160194b65027 schema:affiliation https://www.grid.ac/institutes/grid.26091.3c
106 schema:familyName Jinzaki
107 schema:givenName Masahiro
108 rdf:type schema:Person
109 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
110 schema:name Medical and Health Sciences
111 rdf:type schema:DefinedTerm
112 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
113 schema:name Clinical Sciences
114 rdf:type schema:DefinedTerm
115 sg:journal.1095887 schema:issn 0910-8327
116 1615-2573
117 schema:name Heart and Vessels
118 rdf:type schema:Periodical
119 sg:pub.10.1007/s00330-017-4845-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085179011
120 https://doi.org/10.1007/s00330-017-4845-5
121 rdf:type schema:CreativeWork
122 sg:pub.10.1186/1532-429x-14-27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014145175
123 https://doi.org/10.1186/1532-429x-14-27
124 rdf:type schema:CreativeWork
125 sg:pub.10.1186/1532-429x-14-64 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002584485
126 https://doi.org/10.1186/1532-429x-14-64
127 rdf:type schema:CreativeWork
128 sg:pub.10.1186/1532-429x-15-13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007930749
129 https://doi.org/10.1186/1532-429x-15-13
130 rdf:type schema:CreativeWork
131 sg:pub.10.1186/1532-429x-15-53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048448907
132 https://doi.org/10.1186/1532-429x-15-53
133 rdf:type schema:CreativeWork
134 sg:pub.10.1186/1532-429x-15-56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024598134
135 https://doi.org/10.1186/1532-429x-15-56
136 rdf:type schema:CreativeWork
137 sg:pub.10.1186/1532-429x-15-63 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028139125
138 https://doi.org/10.1186/1532-429x-15-63
139 rdf:type schema:CreativeWork
140 sg:pub.10.1186/1532-429x-15-78 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027688149
141 https://doi.org/10.1186/1532-429x-15-78
142 rdf:type schema:CreativeWork
143 sg:pub.10.1186/1532-429x-15-s1-p3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083681855
144 https://doi.org/10.1186/1532-429x-15-s1-p3
145 rdf:type schema:CreativeWork
146 sg:pub.10.1186/1532-429x-16-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033256742
147 https://doi.org/10.1186/1532-429x-16-2
148 rdf:type schema:CreativeWork
149 sg:pub.10.1186/1532-429x-17-s1-w20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053101628
150 https://doi.org/10.1186/1532-429x-17-s1-w20
151 rdf:type schema:CreativeWork
152 sg:pub.10.1186/s12968-014-0069-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1035852489
153 https://doi.org/10.1186/s12968-014-0069-x
154 rdf:type schema:CreativeWork
155 sg:pub.10.1186/s12968-016-0286-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033566144
156 https://doi.org/10.1186/s12968-016-0286-6
157 rdf:type schema:CreativeWork
158 sg:pub.10.1186/s12968-016-0302-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1034842369
159 https://doi.org/10.1186/s12968-016-0302-x
160 rdf:type schema:CreativeWork
161 sg:pub.10.1186/s12968-017-0371-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091875829
162 https://doi.org/10.1186/s12968-017-0371-5
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1002/jmri.23875 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033392350
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1002/jmri.25217 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013916977
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1002/jmri.26160 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104545791
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1002/mrm.20110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050456372
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1002/mrm.24878 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012132258
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1016/j.jacc.2013.05.078 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021816205
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1093/ehjci/jet245 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045410158
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1093/ehjci/jey034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101211565
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1093/eurheartj/ehr481 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036767620
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1148/radiol.13131225 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017217090
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1148/radiol.14140296 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053014118
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1148/rg.342125121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004231884
187 rdf:type schema:CreativeWork
188 https://doi.org/10.2463/mrms.mp.2016-0092 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085430921
189 rdf:type schema:CreativeWork
190 https://www.grid.ac/institutes/grid.26091.3c schema:alternateName Keio University
191 schema:name Department of Radiology, Keio University School of Medicine, 35 Shinanomachi, Shinjyuku-ku, Tokyo, 160-8582, Japan.
192 Department of Radiology, Keio University School of Medicine, 35 Shinanomachi, Shinjyuku-ku, Tokyo, 160-8582, Japan. okuda@rad.med.keio.ac.jp.
193 rdf:type schema:Organization
194 https://www.grid.ac/institutes/grid.481637.f schema:alternateName General Electric (Japan)
195 schema:name MR Applications and Workflow, GE Healthcare Japan, 4-7-127, Asahigaoka, Hino-shi, Tokyo, Japan.
196 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...