Associations between plasma nesfatin-1 levels and the presence and severity of coronary artery disease View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-01-01

AUTHORS

Susumu Ibe, Yoshimi Kishimoto, Hanako Niki, Emi Saita, Tomohiko Umei, Kotaro Miura, Yukinori Ikegami, Reiko Ohmori, Kazuo Kondo, Yukihiko Momiyama

ABSTRACT

Nesfatin-1 is a recently identified anorexigenic peptide mainly secreted from the brain and adipose tissue. Although nesfatin-1 may have pro-inflammatory and apoptotic properties, the association between plasma nesfatin-1 levels and coronary artery disease (CAD) has not been clarified yet. We investigated plasma nesfatin-1 levels in 302 patients undergoing elective coronary angiography. Of the 302 study patients, CAD was present in 172 (57%), of whom 67 had 1-vessel, 49 had 2-vessel, and 56 had 3-vessel disease. Compared with 130 patients without CAD, 172 with CAD had higher plasma nesfatin-1 levels (median 0.21 vs. 0.17 ng/mL, P < 0.01). A stepwise increase in nesfatin-1 levels was found depending on the number of > 50% stenotic coronary vessels: 0.17 in CAD(-), 0.20 in 1-vessel, 0.21 in 2-vessel, and 0.22 ng/mL in 3-vessel disease (P < 0.05). A high nesfatin-1 level (> 0.19 ng/mL) was found in 43% of patients with CAD(-), 55% of those with 1-vessel, 55% of those with 2-vessel, and 68% of those with 3-vessel disease (P < 0.05). Nesfatin-1 levels significantly correlated with the number of > 50% stenotic coronary segments (r = 0.14, P < 0.02). In multivariate analysis, plasma nesfatin-1 levels were a significant factor for CAD independent of atherosclerotic risk factors. The odds ratio for CAD was 1.71 (95% CI 1.01-2.91) for high nesfatin-1 level of > 0.19 ng/mL (P < 0.05). Thus, plasma nesfatin-1 levels were found to be high in patients with CAD and were associated with CAD independent of atherosclerotic risk factors, suggesting that high nesfatin-1 levels in patients with CAD may play a role in the development of coronary atherosclerosis. More... »

PAGES

1-6

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00380-018-01328-3

DOI

http://dx.doi.org/10.1007/s00380-018-01328-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111012138

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30599062


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Cardiorespiratory Medicine and Haematology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Tokyo Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.416239.b", 
          "name": [
            "Department of Cardiology, National Hospital Organization Tokyo Medical Center, 2-5-1 Higashigaoka, Meguro-ku, 152-8902, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ibe", 
        "givenName": "Susumu", 
        "id": "sg:person.014332662210.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014332662210.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ochanomizu University", 
          "id": "https://www.grid.ac/institutes/grid.412314.1", 
          "name": [
            "Endowed Research Department \u201cFood for Health\u201d, Ochanomizu University, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kishimoto", 
        "givenName": "Yoshimi", 
        "id": "sg:person.01345135111.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01345135111.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tokyo Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.416239.b", 
          "name": [
            "Department of Cardiology, National Hospital Organization Tokyo Medical Center, 2-5-1 Higashigaoka, Meguro-ku, 152-8902, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Niki", 
        "givenName": "Hanako", 
        "id": "sg:person.014374265272.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014374265272.56"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ochanomizu University", 
          "id": "https://www.grid.ac/institutes/grid.412314.1", 
          "name": [
            "Endowed Research Department \u201cFood for Health\u201d, Ochanomizu University, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Saita", 
        "givenName": "Emi", 
        "id": "sg:person.01233774513.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01233774513.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tokyo Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.416239.b", 
          "name": [
            "Department of Cardiology, National Hospital Organization Tokyo Medical Center, 2-5-1 Higashigaoka, Meguro-ku, 152-8902, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Umei", 
        "givenName": "Tomohiko", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tokyo Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.416239.b", 
          "name": [
            "Department of Cardiology, National Hospital Organization Tokyo Medical Center, 2-5-1 Higashigaoka, Meguro-ku, 152-8902, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Miura", 
        "givenName": "Kotaro", 
        "id": "sg:person.014702677145.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014702677145.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tokyo Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.416239.b", 
          "name": [
            "Department of Cardiology, National Hospital Organization Tokyo Medical Center, 2-5-1 Higashigaoka, Meguro-ku, 152-8902, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ikegami", 
        "givenName": "Yukinori", 
        "id": "sg:person.01003707337.71", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01003707337.71"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Utsunomiya University", 
          "id": "https://www.grid.ac/institutes/grid.267687.a", 
          "name": [
            "Faculty of Regional Design, Utsunomiya University, Tochigi, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ohmori", 
        "givenName": "Reiko", 
        "id": "sg:person.0612637311.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0612637311.88"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Toyo University", 
          "id": "https://www.grid.ac/institutes/grid.265125.7", 
          "name": [
            "Endowed Research Department \u201cFood for Health\u201d, Ochanomizu University, Tokyo, Japan", 
            "Institute of Life Innovation Studies, Toyo University, Gunma, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kondo", 
        "givenName": "Kazuo", 
        "id": "sg:person.01254762460.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01254762460.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tokyo Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.416239.b", 
          "name": [
            "Department of Cardiology, National Hospital Organization Tokyo Medical Center, 2-5-1 Higashigaoka, Meguro-ku, 152-8902, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Momiyama", 
        "givenName": "Yukihiko", 
        "id": "sg:person.0733255012.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0733255012.80"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/jor.22585", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004575536"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2014/232167", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006764407"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.npep.2015.08.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006784354"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.peptides.2012.04.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009280889"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2265.2010.03835.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009823304"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.bbrc.2009.12.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011945448"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.bbrc.2009.12.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011945448"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1055/s-0031-1286339", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015956454"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.peptides.2013.06.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027179862"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1530/joe-14-0496", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027318639"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2013/631251", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031116443"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1227/neu.0b013e318210f258", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033497433"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/ajpregu.90867.2008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041494146"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.regpep.2009.11.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041602628"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature05162", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045417860", 
          "https://doi.org/10.1038/nature05162"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature05162", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045417860", 
          "https://doi.org/10.1038/nature05162"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature05162", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045417860", 
          "https://doi.org/10.1038/nature05162"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.bbrc.2012.01.076", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049983905"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1210/en.2009-1358", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064250349"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.17305/bjbms.2015.432", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068327807"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1079317106", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2017/7687098", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100103411"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cca.2018.02.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100900120"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.peptides.2018.02.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101148054"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biopha.2018.03.120", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101901889"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.bbadis.2018.04.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103169558"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-01-01", 
    "datePublishedReg": "2019-01-01", 
    "description": "Nesfatin-1 is a recently identified anorexigenic peptide mainly secreted from the brain and adipose tissue. Although nesfatin-1 may have pro-inflammatory and apoptotic properties, the association between plasma nesfatin-1 levels and coronary artery disease (CAD) has not been clarified yet. We investigated plasma nesfatin-1 levels in 302 patients undergoing elective coronary angiography. Of the 302 study patients, CAD was present in 172 (57%), of whom 67 had 1-vessel, 49 had 2-vessel, and 56 had 3-vessel disease. Compared with 130 patients without CAD, 172 with CAD had higher plasma nesfatin-1 levels (median 0.21 vs. 0.17\u00a0ng/mL, P\u2009<\u20090.01). A stepwise increase in nesfatin-1 levels was found depending on the number of\u2009>\u200950% stenotic coronary vessels: 0.17 in CAD(-), 0.20 in 1-vessel, 0.21 in 2-vessel, and 0.22\u00a0ng/mL in 3-vessel disease (P\u2009<\u20090.05). A high nesfatin-1 level (>\u20090.19\u00a0ng/mL) was found in 43% of patients with CAD(-), 55% of those with 1-vessel, 55% of those with 2-vessel, and 68% of those with 3-vessel disease (P\u2009<\u20090.05). Nesfatin-1 levels significantly correlated with the number of\u2009>\u200950% stenotic coronary segments (r\u2009=\u20090.14, P\u2009<\u20090.02). In multivariate analysis, plasma nesfatin-1 levels were a significant factor for CAD independent of atherosclerotic risk factors. The odds ratio for CAD was 1.71 (95% CI 1.01-2.91) for high nesfatin-1 level of\u2009>\u20090.19\u00a0ng/mL (P\u2009<\u20090.05). Thus, plasma nesfatin-1 levels were found to be high in patients with CAD and were associated with CAD independent of atherosclerotic risk factors, suggesting that high nesfatin-1 levels in patients with CAD may play a role in the development of coronary atherosclerosis.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00380-018-01328-3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1095887", 
        "issn": [
          "0910-8327", 
          "1615-2573"
        ], 
        "name": "Heart and Vessels", 
        "type": "Periodical"
      }
    ], 
    "name": "Associations between plasma nesfatin-1 levels and the presence and severity of coronary artery disease", 
    "pagination": "1-6", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "c6d594fc140192ddac43987e8b2e80ea0c5edc392103442e066e5a8414d1a2a8"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30599062"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "8511258"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00380-018-01328-3"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111012138"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00380-018-01328-3", 
      "https://app.dimensions.ai/details/publication/pub.1111012138"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:30", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000309_0000000309/records_106265_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00380-018-01328-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00380-018-01328-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00380-018-01328-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00380-018-01328-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00380-018-01328-3'


 

This table displays all metadata directly associated to this object as RDF triples.

204 TRIPLES      21 PREDICATES      49 URIs      18 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00380-018-01328-3 schema:about anzsrc-for:11
2 anzsrc-for:1102
3 schema:author N0110ea0ca2244bc691547439d03b39ca
4 schema:citation sg:pub.10.1038/nature05162
5 https://app.dimensions.ai/details/publication/pub.1079317106
6 https://doi.org/10.1002/jor.22585
7 https://doi.org/10.1016/j.bbadis.2018.04.002
8 https://doi.org/10.1016/j.bbrc.2009.12.014
9 https://doi.org/10.1016/j.bbrc.2012.01.076
10 https://doi.org/10.1016/j.biopha.2018.03.120
11 https://doi.org/10.1016/j.cca.2018.02.004
12 https://doi.org/10.1016/j.npep.2015.08.003
13 https://doi.org/10.1016/j.peptides.2012.04.014
14 https://doi.org/10.1016/j.peptides.2013.06.006
15 https://doi.org/10.1016/j.peptides.2018.02.002
16 https://doi.org/10.1016/j.regpep.2009.11.003
17 https://doi.org/10.1055/s-0031-1286339
18 https://doi.org/10.1111/j.1365-2265.2010.03835.x
19 https://doi.org/10.1152/ajpregu.90867.2008
20 https://doi.org/10.1155/2013/631251
21 https://doi.org/10.1155/2014/232167
22 https://doi.org/10.1155/2017/7687098
23 https://doi.org/10.1210/en.2009-1358
24 https://doi.org/10.1227/neu.0b013e318210f258
25 https://doi.org/10.1530/joe-14-0496
26 https://doi.org/10.17305/bjbms.2015.432
27 schema:datePublished 2019-01-01
28 schema:datePublishedReg 2019-01-01
29 schema:description Nesfatin-1 is a recently identified anorexigenic peptide mainly secreted from the brain and adipose tissue. Although nesfatin-1 may have pro-inflammatory and apoptotic properties, the association between plasma nesfatin-1 levels and coronary artery disease (CAD) has not been clarified yet. We investigated plasma nesfatin-1 levels in 302 patients undergoing elective coronary angiography. Of the 302 study patients, CAD was present in 172 (57%), of whom 67 had 1-vessel, 49 had 2-vessel, and 56 had 3-vessel disease. Compared with 130 patients without CAD, 172 with CAD had higher plasma nesfatin-1 levels (median 0.21 vs. 0.17 ng/mL, P < 0.01). A stepwise increase in nesfatin-1 levels was found depending on the number of > 50% stenotic coronary vessels: 0.17 in CAD(-), 0.20 in 1-vessel, 0.21 in 2-vessel, and 0.22 ng/mL in 3-vessel disease (P < 0.05). A high nesfatin-1 level (> 0.19 ng/mL) was found in 43% of patients with CAD(-), 55% of those with 1-vessel, 55% of those with 2-vessel, and 68% of those with 3-vessel disease (P < 0.05). Nesfatin-1 levels significantly correlated with the number of > 50% stenotic coronary segments (r = 0.14, P < 0.02). In multivariate analysis, plasma nesfatin-1 levels were a significant factor for CAD independent of atherosclerotic risk factors. The odds ratio for CAD was 1.71 (95% CI 1.01-2.91) for high nesfatin-1 level of > 0.19 ng/mL (P < 0.05). Thus, plasma nesfatin-1 levels were found to be high in patients with CAD and were associated with CAD independent of atherosclerotic risk factors, suggesting that high nesfatin-1 levels in patients with CAD may play a role in the development of coronary atherosclerosis.
30 schema:genre research_article
31 schema:inLanguage en
32 schema:isAccessibleForFree false
33 schema:isPartOf sg:journal.1095887
34 schema:name Associations between plasma nesfatin-1 levels and the presence and severity of coronary artery disease
35 schema:pagination 1-6
36 schema:productId N2dad2bb5385f475eb7dd49b51736f606
37 N9e66c463febb410eb208f49b885719bb
38 Nb08e5b689c2b4f09b88d86d832c0e1a9
39 Nbc79f148fab84e60aede4846161e0ee4
40 Ncc4d9b0b6f334b448e0e72f307d5b607
41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111012138
42 https://doi.org/10.1007/s00380-018-01328-3
43 schema:sdDatePublished 2019-04-11T08:30
44 schema:sdLicense https://scigraph.springernature.com/explorer/license/
45 schema:sdPublisher N22214ef71c854b56a7ac571a0fc9ad03
46 schema:url https://link.springer.com/10.1007%2Fs00380-018-01328-3
47 sgo:license sg:explorer/license/
48 sgo:sdDataset articles
49 rdf:type schema:ScholarlyArticle
50 N0110ea0ca2244bc691547439d03b39ca rdf:first sg:person.014332662210.46
51 rdf:rest N44286ca85f4d4ebbb0c62d250de55c65
52 N1ffb151ebfce450bad75bd17c033ef0e schema:affiliation https://www.grid.ac/institutes/grid.416239.b
53 schema:familyName Umei
54 schema:givenName Tomohiko
55 rdf:type schema:Person
56 N22214ef71c854b56a7ac571a0fc9ad03 schema:name Springer Nature - SN SciGraph project
57 rdf:type schema:Organization
58 N2a8c3b1bd97e45c39cfd965d8b16fafc rdf:first sg:person.0612637311.88
59 rdf:rest N7fbf6eda70e64bfeaed223263ba6c952
60 N2dad2bb5385f475eb7dd49b51736f606 schema:name pubmed_id
61 schema:value 30599062
62 rdf:type schema:PropertyValue
63 N44286ca85f4d4ebbb0c62d250de55c65 rdf:first sg:person.01345135111.10
64 rdf:rest Nbabfcfc03f2e4b81acb6fceeaee5fbe7
65 N52d685b07b7c4f1b8d7bf0ec4a702c36 rdf:first N1ffb151ebfce450bad75bd17c033ef0e
66 rdf:rest Nadd8cd8482b2416bb1f6f96100e94673
67 N7fbf6eda70e64bfeaed223263ba6c952 rdf:first sg:person.01254762460.38
68 rdf:rest Nb6034ffcb9a64c3abe691cee4a1515b6
69 N8968620fcc96495792c45eeedf0878cc rdf:first sg:person.01233774513.28
70 rdf:rest N52d685b07b7c4f1b8d7bf0ec4a702c36
71 N9567d46d52374b33bc7efd6fa657807f rdf:first sg:person.01003707337.71
72 rdf:rest N2a8c3b1bd97e45c39cfd965d8b16fafc
73 N9e66c463febb410eb208f49b885719bb schema:name readcube_id
74 schema:value c6d594fc140192ddac43987e8b2e80ea0c5edc392103442e066e5a8414d1a2a8
75 rdf:type schema:PropertyValue
76 Nadd8cd8482b2416bb1f6f96100e94673 rdf:first sg:person.014702677145.08
77 rdf:rest N9567d46d52374b33bc7efd6fa657807f
78 Nb08e5b689c2b4f09b88d86d832c0e1a9 schema:name nlm_unique_id
79 schema:value 8511258
80 rdf:type schema:PropertyValue
81 Nb6034ffcb9a64c3abe691cee4a1515b6 rdf:first sg:person.0733255012.80
82 rdf:rest rdf:nil
83 Nbabfcfc03f2e4b81acb6fceeaee5fbe7 rdf:first sg:person.014374265272.56
84 rdf:rest N8968620fcc96495792c45eeedf0878cc
85 Nbc79f148fab84e60aede4846161e0ee4 schema:name doi
86 schema:value 10.1007/s00380-018-01328-3
87 rdf:type schema:PropertyValue
88 Ncc4d9b0b6f334b448e0e72f307d5b607 schema:name dimensions_id
89 schema:value pub.1111012138
90 rdf:type schema:PropertyValue
91 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
92 schema:name Medical and Health Sciences
93 rdf:type schema:DefinedTerm
94 anzsrc-for:1102 schema:inDefinedTermSet anzsrc-for:
95 schema:name Cardiorespiratory Medicine and Haematology
96 rdf:type schema:DefinedTerm
97 sg:journal.1095887 schema:issn 0910-8327
98 1615-2573
99 schema:name Heart and Vessels
100 rdf:type schema:Periodical
101 sg:person.01003707337.71 schema:affiliation https://www.grid.ac/institutes/grid.416239.b
102 schema:familyName Ikegami
103 schema:givenName Yukinori
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01003707337.71
105 rdf:type schema:Person
106 sg:person.01233774513.28 schema:affiliation https://www.grid.ac/institutes/grid.412314.1
107 schema:familyName Saita
108 schema:givenName Emi
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01233774513.28
110 rdf:type schema:Person
111 sg:person.01254762460.38 schema:affiliation https://www.grid.ac/institutes/grid.265125.7
112 schema:familyName Kondo
113 schema:givenName Kazuo
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01254762460.38
115 rdf:type schema:Person
116 sg:person.01345135111.10 schema:affiliation https://www.grid.ac/institutes/grid.412314.1
117 schema:familyName Kishimoto
118 schema:givenName Yoshimi
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01345135111.10
120 rdf:type schema:Person
121 sg:person.014332662210.46 schema:affiliation https://www.grid.ac/institutes/grid.416239.b
122 schema:familyName Ibe
123 schema:givenName Susumu
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014332662210.46
125 rdf:type schema:Person
126 sg:person.014374265272.56 schema:affiliation https://www.grid.ac/institutes/grid.416239.b
127 schema:familyName Niki
128 schema:givenName Hanako
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014374265272.56
130 rdf:type schema:Person
131 sg:person.014702677145.08 schema:affiliation https://www.grid.ac/institutes/grid.416239.b
132 schema:familyName Miura
133 schema:givenName Kotaro
134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014702677145.08
135 rdf:type schema:Person
136 sg:person.0612637311.88 schema:affiliation https://www.grid.ac/institutes/grid.267687.a
137 schema:familyName Ohmori
138 schema:givenName Reiko
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0612637311.88
140 rdf:type schema:Person
141 sg:person.0733255012.80 schema:affiliation https://www.grid.ac/institutes/grid.416239.b
142 schema:familyName Momiyama
143 schema:givenName Yukihiko
144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0733255012.80
145 rdf:type schema:Person
146 sg:pub.10.1038/nature05162 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045417860
147 https://doi.org/10.1038/nature05162
148 rdf:type schema:CreativeWork
149 https://app.dimensions.ai/details/publication/pub.1079317106 schema:CreativeWork
150 https://doi.org/10.1002/jor.22585 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004575536
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1016/j.bbadis.2018.04.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103169558
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1016/j.bbrc.2009.12.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011945448
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1016/j.bbrc.2012.01.076 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049983905
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1016/j.biopha.2018.03.120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101901889
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1016/j.cca.2018.02.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100900120
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1016/j.npep.2015.08.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006784354
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1016/j.peptides.2012.04.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009280889
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1016/j.peptides.2013.06.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027179862
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1016/j.peptides.2018.02.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101148054
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1016/j.regpep.2009.11.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041602628
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1055/s-0031-1286339 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015956454
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1111/j.1365-2265.2010.03835.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1009823304
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1152/ajpregu.90867.2008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041494146
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1155/2013/631251 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031116443
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1155/2014/232167 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006764407
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1155/2017/7687098 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100103411
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1210/en.2009-1358 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064250349
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1227/neu.0b013e318210f258 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033497433
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1530/joe-14-0496 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027318639
189 rdf:type schema:CreativeWork
190 https://doi.org/10.17305/bjbms.2015.432 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068327807
191 rdf:type schema:CreativeWork
192 https://www.grid.ac/institutes/grid.265125.7 schema:alternateName Toyo University
193 schema:name Endowed Research Department “Food for Health”, Ochanomizu University, Tokyo, Japan
194 Institute of Life Innovation Studies, Toyo University, Gunma, Japan
195 rdf:type schema:Organization
196 https://www.grid.ac/institutes/grid.267687.a schema:alternateName Utsunomiya University
197 schema:name Faculty of Regional Design, Utsunomiya University, Tochigi, Japan
198 rdf:type schema:Organization
199 https://www.grid.ac/institutes/grid.412314.1 schema:alternateName Ochanomizu University
200 schema:name Endowed Research Department “Food for Health”, Ochanomizu University, Tokyo, Japan
201 rdf:type schema:Organization
202 https://www.grid.ac/institutes/grid.416239.b schema:alternateName Tokyo Medical Center
203 schema:name Department of Cardiology, National Hospital Organization Tokyo Medical Center, 2-5-1 Higashigaoka, Meguro-ku, 152-8902, Tokyo, Japan
204 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...