Selvester QRS score and total perfusion deficit calculated by quantitative gated single-photon emission computed tomography in patients with prior anterior ... View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-04

AUTHORS

Satoshi Kurisu, Takashi Shimonaga, Hiroki Ikenaga, Noriaki Watanabe, Tadanao Higaki, Ken Ishibashi, Yoshihiro Dohi, Yukihiro Fukuda, Yasuki Kihara

ABSTRACT

Selvester QRS scoring system has an advantage of being inexpensive and easily accessible for estimating myocardial infarct (MI) size. We assessed the correlation and agreement between QRS score and total perfusion deficit (TPD) calculated by quantitative gated single-photon emission computed tomography (QGS) in patients with prior anterior MI undergoing coronary intervention. Sixty-six patients with prior anterior MI and 66 age- and sex-matched control subjects were enrolled. QRS score was obtained using a 50-criteria and 31-point system. QRS score was significantly higher in patients with prior anterior MI than control subjects (12.8 ± 8.9 vs 1.1 ± 2.7 %, p < 0.001). In overall patients (n = 132), QRS score was correlated well with TPD (r = 0.81, p < 0.001). This good correlation was found even in patients with TPD ≤40 % (n = 126) or in patients with TPD ≤30 % (n = 117). In overall patients, MI size estimated by QRS score was 7.0 ± 8.8 %, which was significantly smaller than TPD, 11.4 ± 14.0 % (p < 0.001). Bland-Altman plot showed that there was an increasing difference between QRS score and TPD with increasing MI size. When Blant-Altman plots were applied to patients with TPD ≤40 % and further in patients with TPD ≤30 %, the difference between QRS score and TPD became smaller, and the agreement became better. In overall patients, QRS score was correlated well with QGS measurements, such as end-diastolic volume (r = 0.62, p < 0.001), end-systolic volume (r = 0.67, p < 0.001), or ejection fraction (r = -0.73, p < 0.001). Our results suggest that QRS score reflects TPD well in patients with prior anterior MI, whose TPD is less than approximately 30 % even in the coronary intervention era. More... »

PAGES

369-375

References to SciGraph publications

  • 2014-02. Influence of left ventricular geometry on thallium-201 gated single-photon emission tomographic findings in patients with known or suspected coronary artery disease in ANNALS OF NUCLEAR MEDICINE
  • 2016-01. A preliminary feasibility study of simultaneous dual-isotope imaging with a solid-state dedicated cardiac camera for evaluating myocardial perfusion and fatty acid metabolism in HEART AND VESSELS
  • 2013-07. Prognostic impact of pulse pressure at admission on in-hospital outcome after primary percutaneous coronary intervention for acute myocardial infarction in HEART AND VESSELS
  • 2015-01. Resting qualitative and quantitative myocardial contrast echocardiography to predict cardiac events in patients with acute myocardial infarction and percutaneous revascularization in HEART AND VESSELS
  • 2015-03. The relationship between epicardial adipose tissue and ST-segment resolution in patients with acute ST-segment elevation myocardial infarction undergoing primary percutaneous coronary intervention in HEART AND VESSELS
  • 2015-01. Platelet–larger cell ratio and the risk of periprocedural myocardial infarction after percutaneous coronary revascularization in HEART AND VESSELS
  • 2009-02. Quantitative assessment of myocardial perfusion abnormality on SPECT myocardial perfusion imaging is more reproducible than expert visual analysis in JOURNAL OF NUCLEAR CARDIOLOGY
  • 2013-11. Re-elevation of T-wave from day 2 to day 4 after successful percutaneous coronary intervention predicts chronic cardiac systolic dysfunction in patients with first anterior acute myocardial infarction in HEART AND VESSELS
  • 2014-03. Initial culprit-only versus initial multivessel percutaneous coronary intervention in patients with ST-segment elevation myocardial infarction: results from the Ibaraki Cardiovascular Assessment Study registry in HEART AND VESSELS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00380-016-0884-0

    DOI

    http://dx.doi.org/10.1007/s00380-016-0884-0

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1034975671

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/27488118


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Clinical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Aged", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Aged, 80 and over", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Anterior Wall Myocardial Infarction", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Case-Control Studies", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Electrocardiography", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Female", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Heart", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Japan", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Male", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Middle Aged", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Severity of Illness Index", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Tomography, Emission-Computed, Single-Photon", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Hiroshima University", 
              "id": "https://www.grid.ac/institutes/grid.257022.0", 
              "name": [
                "Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3, Kasumi-cho, Minami-ku, 734-8551, Hiroshima, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kurisu", 
            "givenName": "Satoshi", 
            "id": "sg:person.0645167447.34", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0645167447.34"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Hiroshima University", 
              "id": "https://www.grid.ac/institutes/grid.257022.0", 
              "name": [
                "Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3, Kasumi-cho, Minami-ku, 734-8551, Hiroshima, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Shimonaga", 
            "givenName": "Takashi", 
            "id": "sg:person.01117053735.73", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01117053735.73"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Hiroshima University", 
              "id": "https://www.grid.ac/institutes/grid.257022.0", 
              "name": [
                "Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3, Kasumi-cho, Minami-ku, 734-8551, Hiroshima, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ikenaga", 
            "givenName": "Hiroki", 
            "id": "sg:person.01275452674.48", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01275452674.48"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Hiroshima University", 
              "id": "https://www.grid.ac/institutes/grid.257022.0", 
              "name": [
                "Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3, Kasumi-cho, Minami-ku, 734-8551, Hiroshima, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Watanabe", 
            "givenName": "Noriaki", 
            "id": "sg:person.0775565127.53", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0775565127.53"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Hiroshima University", 
              "id": "https://www.grid.ac/institutes/grid.257022.0", 
              "name": [
                "Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3, Kasumi-cho, Minami-ku, 734-8551, Hiroshima, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Higaki", 
            "givenName": "Tadanao", 
            "id": "sg:person.0755241136.11", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0755241136.11"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Hiroshima University", 
              "id": "https://www.grid.ac/institutes/grid.257022.0", 
              "name": [
                "Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3, Kasumi-cho, Minami-ku, 734-8551, Hiroshima, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ishibashi", 
            "givenName": "Ken", 
            "id": "sg:person.0626427456.69", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0626427456.69"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Hiroshima University", 
              "id": "https://www.grid.ac/institutes/grid.257022.0", 
              "name": [
                "Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3, Kasumi-cho, Minami-ku, 734-8551, Hiroshima, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Dohi", 
            "givenName": "Yoshihiro", 
            "id": "sg:person.01346123053.11", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01346123053.11"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Hiroshima University", 
              "id": "https://www.grid.ac/institutes/grid.257022.0", 
              "name": [
                "Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3, Kasumi-cho, Minami-ku, 734-8551, Hiroshima, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Fukuda", 
            "givenName": "Yukihiro", 
            "id": "sg:person.01274355327.09", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01274355327.09"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Hiroshima University", 
              "id": "https://www.grid.ac/institutes/grid.257022.0", 
              "name": [
                "Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3, Kasumi-cho, Minami-ku, 734-8551, Hiroshima, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kihara", 
            "givenName": "Yasuki", 
            "id": "sg:person.01324703771.35", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01324703771.35"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s00380-012-0313-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000588602", 
              "https://doi.org/10.1007/s00380-012-0313-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00380-012-0313-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000588602", 
              "https://doi.org/10.1007/s00380-012-0313-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1542-474x.2009.00327.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004055496"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1542-474x.2009.00327.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004055496"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1056/nejm198201073060102", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007292125"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jelectrocard.2008.06.011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007316916"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1001/archinte.1985.00360100147024", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007936146"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00380-014-0578-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009253097", 
              "https://doi.org/10.1007/s00380-014-0578-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jelectrocard.2008.12.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014176031"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0002-8703(03)00187-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015495535"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0002-8703(03)00187-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015495535"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00380-013-0460-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015689177", 
              "https://doi.org/10.1007/s00380-013-0460-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jelectrocard.2007.02.009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019378750"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1161/01.cir.65.2.342", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022120355"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12149-013-0786-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022245365", 
              "https://doi.org/10.1007/s12149-013-0786-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00380-013-0342-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027335747", 
              "https://doi.org/10.1007/s00380-013-0342-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jelectrocard.2012.03.007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031566437"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/mnm.0000000000000369", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038135275"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/mnm.0000000000000369", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038135275"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12350-008-9018-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048056548", 
              "https://doi.org/10.1007/s12350-008-9018-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00380-012-0277-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048100164", 
              "https://doi.org/10.1007/s00380-012-0277-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00380-013-0449-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049136914", 
              "https://doi.org/10.1007/s00380-013-0449-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00380-013-0459-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050395863", 
              "https://doi.org/10.1007/s00380-013-0459-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1001/archinte.145.10.1877", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1054110485"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1077048079", 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017-04", 
        "datePublishedReg": "2017-04-01", 
        "description": "Selvester QRS scoring system has an advantage of being inexpensive and easily accessible for estimating myocardial infarct (MI) size. We assessed the correlation and agreement between QRS score and total perfusion deficit (TPD) calculated by quantitative gated single-photon emission computed tomography (QGS) in patients with prior anterior MI undergoing coronary intervention. Sixty-six patients with prior anterior MI and 66 age- and sex-matched control subjects were enrolled. QRS score was obtained using a 50-criteria and 31-point system. QRS score was significantly higher in patients with prior anterior MI than control subjects (12.8\u00a0\u00b1\u00a08.9 vs 1.1\u00a0\u00b1\u00a02.7\u00a0%, p\u00a0<\u00a00.001). In overall patients (n\u00a0=\u00a0132), QRS score was correlated well with TPD (r\u00a0=\u00a00.81, p\u00a0<\u00a00.001). This good correlation was found even in patients with TPD \u226440\u00a0% (n\u00a0=\u00a0126) or in patients with TPD \u226430\u00a0% (n\u00a0=\u00a0117). In overall patients, MI size estimated by QRS score was 7.0\u00a0\u00b1\u00a08.8\u00a0%, which was significantly smaller than TPD, 11.4\u00a0\u00b1\u00a014.0\u00a0% (p\u00a0<\u00a00.001). Bland-Altman plot showed that there was an increasing difference between QRS score and TPD with increasing MI size. When Blant-Altman plots were applied to patients with TPD \u226440\u00a0% and further in patients with TPD \u226430\u00a0%, the difference between QRS score and TPD became smaller, and the agreement became better. In overall patients, QRS score was correlated well with QGS measurements, such as end-diastolic volume (r\u00a0=\u00a00.62, p\u00a0<\u00a00.001), end-systolic volume (r\u00a0=\u00a00.67, p\u00a0<\u00a00.001), or ejection fraction (r\u00a0=\u00a0-0.73, p\u00a0<\u00a00.001). Our results suggest that QRS score reflects TPD well in patients with prior anterior MI, whose TPD is less than approximately 30\u00a0% even in the coronary intervention era.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s00380-016-0884-0", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.5871531", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1095887", 
            "issn": [
              "0910-8327", 
              "1615-2573"
            ], 
            "name": "Heart and Vessels", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "32"
          }
        ], 
        "name": "Selvester QRS score and total perfusion deficit calculated by quantitative gated single-photon emission computed tomography in patients with prior anterior myocardial infarction in the coronary intervention era", 
        "pagination": "369-375", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "a69c28a22ffc5b0ddc1583778405f75ad33d7e1adfad825c578f7db92b110a62"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "27488118"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "8511258"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00380-016-0884-0"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1034975671"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00380-016-0884-0", 
          "https://app.dimensions.ai/details/publication/pub.1034975671"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T12:39", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000363_0000000363/records_70046_00000001.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs00380-016-0884-0"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00380-016-0884-0'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00380-016-0884-0'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00380-016-0884-0'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00380-016-0884-0'


     

    This table displays all metadata directly associated to this object as RDF triples.

    250 TRIPLES      21 PREDICATES      63 URIs      34 LITERALS      22 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00380-016-0884-0 schema:about N017f63280d1e496aa82da9266acd8857
    2 N0e69b353da7f4f5a88c54384ea109084
    3 N13bae71d0066435eaf8c3af01af4d09b
    4 N581d19e326834b138d9ecb8b19111189
    5 N5d891f64273e4893ab4651e75c3847db
    6 N6b94e61367964ddeb9b20424c8cbf272
    7 N93930cdbbb3b4ddca4ab8a8317b5021c
    8 N9b39559ec4b742ef9175d8c11100611b
    9 Na2352d34a28a4c358c57466ab7bb30ed
    10 Na6d41e007b15422882d680a659cd8994
    11 Naca69b88864e4e5ba804d3b53f32c1ab
    12 Nc250c5afbcce4d969e2f139c6ad0be72
    13 Neb5821a79a6d4507953077f69fc4e21e
    14 anzsrc-for:11
    15 anzsrc-for:1103
    16 schema:author Nece0deffd672482db3e26d9c07b5f06c
    17 schema:citation sg:pub.10.1007/s00380-012-0277-y
    18 sg:pub.10.1007/s00380-012-0313-y
    19 sg:pub.10.1007/s00380-013-0342-1
    20 sg:pub.10.1007/s00380-013-0449-4
    21 sg:pub.10.1007/s00380-013-0459-2
    22 sg:pub.10.1007/s00380-013-0460-9
    23 sg:pub.10.1007/s00380-014-0578-4
    24 sg:pub.10.1007/s12149-013-0786-5
    25 sg:pub.10.1007/s12350-008-9018-0
    26 https://app.dimensions.ai/details/publication/pub.1077048079
    27 https://doi.org/10.1001/archinte.145.10.1877
    28 https://doi.org/10.1001/archinte.1985.00360100147024
    29 https://doi.org/10.1016/j.jelectrocard.2007.02.009
    30 https://doi.org/10.1016/j.jelectrocard.2008.06.011
    31 https://doi.org/10.1016/j.jelectrocard.2008.12.004
    32 https://doi.org/10.1016/j.jelectrocard.2012.03.007
    33 https://doi.org/10.1016/s0002-8703(03)00187-x
    34 https://doi.org/10.1056/nejm198201073060102
    35 https://doi.org/10.1097/mnm.0000000000000369
    36 https://doi.org/10.1111/j.1542-474x.2009.00327.x
    37 https://doi.org/10.1161/01.cir.65.2.342
    38 schema:datePublished 2017-04
    39 schema:datePublishedReg 2017-04-01
    40 schema:description Selvester QRS scoring system has an advantage of being inexpensive and easily accessible for estimating myocardial infarct (MI) size. We assessed the correlation and agreement between QRS score and total perfusion deficit (TPD) calculated by quantitative gated single-photon emission computed tomography (QGS) in patients with prior anterior MI undergoing coronary intervention. Sixty-six patients with prior anterior MI and 66 age- and sex-matched control subjects were enrolled. QRS score was obtained using a 50-criteria and 31-point system. QRS score was significantly higher in patients with prior anterior MI than control subjects (12.8 ± 8.9 vs 1.1 ± 2.7 %, p < 0.001). In overall patients (n = 132), QRS score was correlated well with TPD (r = 0.81, p < 0.001). This good correlation was found even in patients with TPD ≤40 % (n = 126) or in patients with TPD ≤30 % (n = 117). In overall patients, MI size estimated by QRS score was 7.0 ± 8.8 %, which was significantly smaller than TPD, 11.4 ± 14.0 % (p < 0.001). Bland-Altman plot showed that there was an increasing difference between QRS score and TPD with increasing MI size. When Blant-Altman plots were applied to patients with TPD ≤40 % and further in patients with TPD ≤30 %, the difference between QRS score and TPD became smaller, and the agreement became better. In overall patients, QRS score was correlated well with QGS measurements, such as end-diastolic volume (r = 0.62, p < 0.001), end-systolic volume (r = 0.67, p < 0.001), or ejection fraction (r = -0.73, p < 0.001). Our results suggest that QRS score reflects TPD well in patients with prior anterior MI, whose TPD is less than approximately 30 % even in the coronary intervention era.
    41 schema:genre research_article
    42 schema:inLanguage en
    43 schema:isAccessibleForFree false
    44 schema:isPartOf Ncf1c73ba427b4c69b4b867cb2b23f164
    45 Nfd5a186a05fe4b7d8095d48488b5c953
    46 sg:journal.1095887
    47 schema:name Selvester QRS score and total perfusion deficit calculated by quantitative gated single-photon emission computed tomography in patients with prior anterior myocardial infarction in the coronary intervention era
    48 schema:pagination 369-375
    49 schema:productId N25d5628ea09e4dee9d189aa6f2f67004
    50 N3a84e08d73bb43cc84da8010f13f1add
    51 N6596fc6aa0124e6b91f1579ae7dd082a
    52 N7978708a879c45dfa6f975748955c600
    53 N902245452fb348f8873e5c7b8a4214df
    54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034975671
    55 https://doi.org/10.1007/s00380-016-0884-0
    56 schema:sdDatePublished 2019-04-11T12:39
    57 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    58 schema:sdPublisher N585c251b234a4a0ab7d7eb96192b10db
    59 schema:url https://link.springer.com/10.1007%2Fs00380-016-0884-0
    60 sgo:license sg:explorer/license/
    61 sgo:sdDataset articles
    62 rdf:type schema:ScholarlyArticle
    63 N017f63280d1e496aa82da9266acd8857 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    64 schema:name Severity of Illness Index
    65 rdf:type schema:DefinedTerm
    66 N05335d4210db4ce1a63a79bb4c72a841 rdf:first sg:person.01346123053.11
    67 rdf:rest N20b27ecf9bdb4d27b38463d3cc13d798
    68 N0e69b353da7f4f5a88c54384ea109084 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    69 schema:name Heart
    70 rdf:type schema:DefinedTerm
    71 N13bae71d0066435eaf8c3af01af4d09b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    72 schema:name Humans
    73 rdf:type schema:DefinedTerm
    74 N20b27ecf9bdb4d27b38463d3cc13d798 rdf:first sg:person.01274355327.09
    75 rdf:rest N432e52b7a9284b21a6212fe84be081b3
    76 N25d5628ea09e4dee9d189aa6f2f67004 schema:name nlm_unique_id
    77 schema:value 8511258
    78 rdf:type schema:PropertyValue
    79 N32a3017b4722456db5e61ecb910eca86 rdf:first sg:person.01275452674.48
    80 rdf:rest Nf26dc06b85474f72983347784fd61d42
    81 N3a84e08d73bb43cc84da8010f13f1add schema:name readcube_id
    82 schema:value a69c28a22ffc5b0ddc1583778405f75ad33d7e1adfad825c578f7db92b110a62
    83 rdf:type schema:PropertyValue
    84 N432e52b7a9284b21a6212fe84be081b3 rdf:first sg:person.01324703771.35
    85 rdf:rest rdf:nil
    86 N4f00a48608a9440081571e5876c5817a rdf:first sg:person.0626427456.69
    87 rdf:rest N05335d4210db4ce1a63a79bb4c72a841
    88 N581d19e326834b138d9ecb8b19111189 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    89 schema:name Middle Aged
    90 rdf:type schema:DefinedTerm
    91 N585c251b234a4a0ab7d7eb96192b10db schema:name Springer Nature - SN SciGraph project
    92 rdf:type schema:Organization
    93 N5d891f64273e4893ab4651e75c3847db schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    94 schema:name Anterior Wall Myocardial Infarction
    95 rdf:type schema:DefinedTerm
    96 N6596fc6aa0124e6b91f1579ae7dd082a schema:name pubmed_id
    97 schema:value 27488118
    98 rdf:type schema:PropertyValue
    99 N6b94e61367964ddeb9b20424c8cbf272 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    100 schema:name Aged
    101 rdf:type schema:DefinedTerm
    102 N74d1aee1f95440de9d391ae8da9d2ce3 rdf:first sg:person.01117053735.73
    103 rdf:rest N32a3017b4722456db5e61ecb910eca86
    104 N7978708a879c45dfa6f975748955c600 schema:name doi
    105 schema:value 10.1007/s00380-016-0884-0
    106 rdf:type schema:PropertyValue
    107 N8f28944e4ee44e488185f923c1600912 rdf:first sg:person.0755241136.11
    108 rdf:rest N4f00a48608a9440081571e5876c5817a
    109 N902245452fb348f8873e5c7b8a4214df schema:name dimensions_id
    110 schema:value pub.1034975671
    111 rdf:type schema:PropertyValue
    112 N93930cdbbb3b4ddca4ab8a8317b5021c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    113 schema:name Female
    114 rdf:type schema:DefinedTerm
    115 N9b39559ec4b742ef9175d8c11100611b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    116 schema:name Case-Control Studies
    117 rdf:type schema:DefinedTerm
    118 Na2352d34a28a4c358c57466ab7bb30ed schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    119 schema:name Aged, 80 and over
    120 rdf:type schema:DefinedTerm
    121 Na6d41e007b15422882d680a659cd8994 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    122 schema:name Japan
    123 rdf:type schema:DefinedTerm
    124 Naca69b88864e4e5ba804d3b53f32c1ab schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    125 schema:name Tomography, Emission-Computed, Single-Photon
    126 rdf:type schema:DefinedTerm
    127 Nc250c5afbcce4d969e2f139c6ad0be72 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    128 schema:name Male
    129 rdf:type schema:DefinedTerm
    130 Ncf1c73ba427b4c69b4b867cb2b23f164 schema:volumeNumber 32
    131 rdf:type schema:PublicationVolume
    132 Neb5821a79a6d4507953077f69fc4e21e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    133 schema:name Electrocardiography
    134 rdf:type schema:DefinedTerm
    135 Nece0deffd672482db3e26d9c07b5f06c rdf:first sg:person.0645167447.34
    136 rdf:rest N74d1aee1f95440de9d391ae8da9d2ce3
    137 Nf26dc06b85474f72983347784fd61d42 rdf:first sg:person.0775565127.53
    138 rdf:rest N8f28944e4ee44e488185f923c1600912
    139 Nfd5a186a05fe4b7d8095d48488b5c953 schema:issueNumber 4
    140 rdf:type schema:PublicationIssue
    141 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    142 schema:name Medical and Health Sciences
    143 rdf:type schema:DefinedTerm
    144 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
    145 schema:name Clinical Sciences
    146 rdf:type schema:DefinedTerm
    147 sg:grant.5871531 http://pending.schema.org/fundedItem sg:pub.10.1007/s00380-016-0884-0
    148 rdf:type schema:MonetaryGrant
    149 sg:journal.1095887 schema:issn 0910-8327
    150 1615-2573
    151 schema:name Heart and Vessels
    152 rdf:type schema:Periodical
    153 sg:person.01117053735.73 schema:affiliation https://www.grid.ac/institutes/grid.257022.0
    154 schema:familyName Shimonaga
    155 schema:givenName Takashi
    156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01117053735.73
    157 rdf:type schema:Person
    158 sg:person.01274355327.09 schema:affiliation https://www.grid.ac/institutes/grid.257022.0
    159 schema:familyName Fukuda
    160 schema:givenName Yukihiro
    161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01274355327.09
    162 rdf:type schema:Person
    163 sg:person.01275452674.48 schema:affiliation https://www.grid.ac/institutes/grid.257022.0
    164 schema:familyName Ikenaga
    165 schema:givenName Hiroki
    166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01275452674.48
    167 rdf:type schema:Person
    168 sg:person.01324703771.35 schema:affiliation https://www.grid.ac/institutes/grid.257022.0
    169 schema:familyName Kihara
    170 schema:givenName Yasuki
    171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01324703771.35
    172 rdf:type schema:Person
    173 sg:person.01346123053.11 schema:affiliation https://www.grid.ac/institutes/grid.257022.0
    174 schema:familyName Dohi
    175 schema:givenName Yoshihiro
    176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01346123053.11
    177 rdf:type schema:Person
    178 sg:person.0626427456.69 schema:affiliation https://www.grid.ac/institutes/grid.257022.0
    179 schema:familyName Ishibashi
    180 schema:givenName Ken
    181 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0626427456.69
    182 rdf:type schema:Person
    183 sg:person.0645167447.34 schema:affiliation https://www.grid.ac/institutes/grid.257022.0
    184 schema:familyName Kurisu
    185 schema:givenName Satoshi
    186 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0645167447.34
    187 rdf:type schema:Person
    188 sg:person.0755241136.11 schema:affiliation https://www.grid.ac/institutes/grid.257022.0
    189 schema:familyName Higaki
    190 schema:givenName Tadanao
    191 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0755241136.11
    192 rdf:type schema:Person
    193 sg:person.0775565127.53 schema:affiliation https://www.grid.ac/institutes/grid.257022.0
    194 schema:familyName Watanabe
    195 schema:givenName Noriaki
    196 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0775565127.53
    197 rdf:type schema:Person
    198 sg:pub.10.1007/s00380-012-0277-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1048100164
    199 https://doi.org/10.1007/s00380-012-0277-y
    200 rdf:type schema:CreativeWork
    201 sg:pub.10.1007/s00380-012-0313-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1000588602
    202 https://doi.org/10.1007/s00380-012-0313-y
    203 rdf:type schema:CreativeWork
    204 sg:pub.10.1007/s00380-013-0342-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027335747
    205 https://doi.org/10.1007/s00380-013-0342-1
    206 rdf:type schema:CreativeWork
    207 sg:pub.10.1007/s00380-013-0449-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049136914
    208 https://doi.org/10.1007/s00380-013-0449-4
    209 rdf:type schema:CreativeWork
    210 sg:pub.10.1007/s00380-013-0459-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050395863
    211 https://doi.org/10.1007/s00380-013-0459-2
    212 rdf:type schema:CreativeWork
    213 sg:pub.10.1007/s00380-013-0460-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015689177
    214 https://doi.org/10.1007/s00380-013-0460-9
    215 rdf:type schema:CreativeWork
    216 sg:pub.10.1007/s00380-014-0578-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009253097
    217 https://doi.org/10.1007/s00380-014-0578-4
    218 rdf:type schema:CreativeWork
    219 sg:pub.10.1007/s12149-013-0786-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022245365
    220 https://doi.org/10.1007/s12149-013-0786-5
    221 rdf:type schema:CreativeWork
    222 sg:pub.10.1007/s12350-008-9018-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048056548
    223 https://doi.org/10.1007/s12350-008-9018-0
    224 rdf:type schema:CreativeWork
    225 https://app.dimensions.ai/details/publication/pub.1077048079 schema:CreativeWork
    226 https://doi.org/10.1001/archinte.145.10.1877 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054110485
    227 rdf:type schema:CreativeWork
    228 https://doi.org/10.1001/archinte.1985.00360100147024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007936146
    229 rdf:type schema:CreativeWork
    230 https://doi.org/10.1016/j.jelectrocard.2007.02.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019378750
    231 rdf:type schema:CreativeWork
    232 https://doi.org/10.1016/j.jelectrocard.2008.06.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007316916
    233 rdf:type schema:CreativeWork
    234 https://doi.org/10.1016/j.jelectrocard.2008.12.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014176031
    235 rdf:type schema:CreativeWork
    236 https://doi.org/10.1016/j.jelectrocard.2012.03.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031566437
    237 rdf:type schema:CreativeWork
    238 https://doi.org/10.1016/s0002-8703(03)00187-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1015495535
    239 rdf:type schema:CreativeWork
    240 https://doi.org/10.1056/nejm198201073060102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007292125
    241 rdf:type schema:CreativeWork
    242 https://doi.org/10.1097/mnm.0000000000000369 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038135275
    243 rdf:type schema:CreativeWork
    244 https://doi.org/10.1111/j.1542-474x.2009.00327.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1004055496
    245 rdf:type schema:CreativeWork
    246 https://doi.org/10.1161/01.cir.65.2.342 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022120355
    247 rdf:type schema:CreativeWork
    248 https://www.grid.ac/institutes/grid.257022.0 schema:alternateName Hiroshima University
    249 schema:name Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3, Kasumi-cho, Minami-ku, 734-8551, Hiroshima, Japan
    250 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...