Serum neutrophil gelatinase-associated lipocalin concentration reflects severity of coronary artery disease in patients without heart failure and chronic kidney disease View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-10

AUTHORS

Mikako Katagiri, Masao Takahashi, Kent Doi, Masahiro Myojo, Arihiro Kiyosue, Jiro Ando, Yasunobu Hirata, Issei Komuro

ABSTRACT

Serum neutrophil gelatinase-associated lipocalin (NGAL) is recognized as a useful biomarker for acute kidney injury. Recently, elevated NGAL levels were reported in patients with heart failure and cardiac events, but the association between serum NGAL and severity of coronary artery disease (CAD) has not been investigated adequately. This study aimed to evaluate the association between serum NGAL concentration and CAD severity in patients without heart failure and chronic kidney disease. Two-hundred thirteen patients [mean age: 66.2 ± 9.2 (SD)] without heart failure and chronic kidney disease (estimated glomerular filtration rate >60 mL/min/1.73 m(2)) who underwent coronary angiography were retrospectively analyzed using the SYNTAX score. The mean concentration of serum NGAL was 134.3 ± 111.3 ng/mL. A statistically significant correlation was observed between serum NGAL levels and the SYNTAX score (R = 0.18, P = 0.0091). Multivariable analysis also showed elevated serum NGAL as an independent risk factor for a high SYNTAX score (P < 0.01). Moreover, we evaluated the association of serum NGAL and brain natriuretic peptide (BNP) with the SYNTAX score. Patients with high levels of serum NGAL (>100 ng/mL) and high levels of BNP (>25 pg/mL) had a higher SYNTAX score (low-low vs. high-high: 13.8 ± 13.4 vs. 20.8 ± 18.9, P < 0.05). Serum NGAL levels were positively and significantly associated with CAD severity, and the evaluation of both serum NGAL and BNP was useful for predicting CAD in patients without renal dysfunction and heart failure. Serum NGAL might be a biomarker for CAD severity. More... »

PAGES

1595-1602

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00380-015-0776-8

DOI

http://dx.doi.org/10.1007/s00380-015-0776-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1038980920

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/26614309


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Cardiorespiratory Medicine and Haematology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biomarkers", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Coronary Angiography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Coronary Artery Disease", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Glomerular Filtration Rate", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Heart Failure", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Japan", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Lipocalin-2", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Multivariate Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Natriuretic Peptide, Brain", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prognosis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Regression Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Renal Insufficiency, Chronic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Retrospective Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Risk Factors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Severity of Illness Index", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Tokyo", 
          "id": "https://www.grid.ac/institutes/grid.26999.3d", 
          "name": [
            "Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, 113-8655, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Katagiri", 
        "givenName": "Mikako", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Tokyo", 
          "id": "https://www.grid.ac/institutes/grid.26999.3d", 
          "name": [
            "Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, 113-8655, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Takahashi", 
        "givenName": "Masao", 
        "id": "sg:person.013234515004.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013234515004.78"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Tokyo", 
          "id": "https://www.grid.ac/institutes/grid.26999.3d", 
          "name": [
            "Department of Critical Care Medicine, The University of Tokyo, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Doi", 
        "givenName": "Kent", 
        "id": "sg:person.0627060174.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0627060174.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Tokyo", 
          "id": "https://www.grid.ac/institutes/grid.26999.3d", 
          "name": [
            "Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, 113-8655, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Myojo", 
        "givenName": "Masahiro", 
        "id": "sg:person.01141035522.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01141035522.67"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Tokyo", 
          "id": "https://www.grid.ac/institutes/grid.26999.3d", 
          "name": [
            "Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, 113-8655, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kiyosue", 
        "givenName": "Arihiro", 
        "id": "sg:person.01024607122.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01024607122.82"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Tokyo", 
          "id": "https://www.grid.ac/institutes/grid.26999.3d", 
          "name": [
            "Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, 113-8655, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ando", 
        "givenName": "Jiro", 
        "id": "sg:person.0743252173.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0743252173.26"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tokyo Teishin hospital", 
          "id": "https://www.grid.ac/institutes/grid.414994.5", 
          "name": [
            "Tokyo Teishin Hospital, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hirata", 
        "givenName": "Yasunobu", 
        "id": "sg:person.07703025442.98", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07703025442.98"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Tokyo", 
          "id": "https://www.grid.ac/institutes/grid.26999.3d", 
          "name": [
            "Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, 113-8655, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Komuro", 
        "givenName": "Issei", 
        "id": "sg:person.01012024207.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01012024207.33"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1053/j.ajkd.2008.12.034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000437042"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jacc.2010.03.044", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002440024"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ihj.2013.12.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003683822"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0828-282x(09)70715-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006948442"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.amjcard.2009.05.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009040364"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00380-012-0270-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010084517", 
          "https://doi.org/10.1007/s00380-012-0270-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jacc.2008.03.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010878307"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmoa011053", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011170971"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1373/clinchem.2007.097360", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012810141"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.atv.0000193567.88685.f4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013266389"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.atv.0000193567.88685.f4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013266389"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/eurheartj/eht151", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026649630"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmra043430", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027877419"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/039463200702000117", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028158919"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/039463200702000117", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028158919"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmoa0804626", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028585181"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10238-004-0037-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029607183", 
          "https://doi.org/10.1007/s10238-004-0037-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.cir.87.2.464", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031556822"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00380-014-0538-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031773568", 
          "https://doi.org/10.1007/s00380-014-0538-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2337/dc09-9033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034182990"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/hq0302.105287", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034337129"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijcard.2011.07.080", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034513481"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1067/mhj.2001.113215", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036301480"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(97)06031-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042410407"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(05)74811-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043421666"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jacc.2009.11.049", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043674507"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/eurjhf/hfr087", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045912712"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1172/jci117619", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046171761"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00281-009-0149-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046477482", 
          "https://doi.org/10.1007/s00281-009-0149-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00281-009-0149-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046477482", 
          "https://doi.org/10.1007/s00281-009-0149-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00281-009-0149-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046477482", 
          "https://doi.org/10.1007/s00281-009-0149-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1432-1327.2001.02066.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053000900"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.cir.92.3.657", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063336462"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/res.90.3.251", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1075003270"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077957741", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082464347", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082989406", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-10", 
    "datePublishedReg": "2016-10-01", 
    "description": "Serum neutrophil gelatinase-associated lipocalin (NGAL) is recognized as a useful biomarker for acute kidney injury. Recently, elevated NGAL levels were reported in patients with heart failure and cardiac events, but the association between serum NGAL and severity of coronary artery disease (CAD) has not been investigated adequately. This study aimed to evaluate the association between serum NGAL concentration and CAD severity in patients without heart failure and chronic kidney disease. Two-hundred thirteen patients [mean age: 66.2\u00a0\u00b1\u00a09.2 (SD)] without heart failure and chronic kidney disease (estimated glomerular filtration rate >60\u00a0mL/min/1.73\u00a0m(2)) who underwent coronary angiography were retrospectively analyzed using the SYNTAX score. The mean concentration of serum NGAL was 134.3\u00a0\u00b1\u00a0111.3\u00a0ng/mL. A statistically significant correlation was observed between serum NGAL levels and the SYNTAX score (R\u00a0=\u00a00.18, P\u00a0=\u00a00.0091). Multivariable analysis also showed elevated serum NGAL as an independent risk factor for a high SYNTAX score (P\u00a0<\u00a00.01). Moreover, we evaluated the association of serum NGAL and brain natriuretic peptide (BNP) with the SYNTAX score. Patients with high levels of serum NGAL (>100\u00a0ng/mL) and high levels of BNP (>25\u00a0pg/mL) had a higher SYNTAX score (low-low vs. high-high: 13.8\u00a0\u00b1\u00a013.4 vs. 20.8\u00a0\u00b1\u00a018.9, P\u00a0<\u00a00.05). Serum NGAL levels were positively and significantly associated with CAD severity, and the evaluation of both serum NGAL and BNP was useful for predicting CAD in patients without renal dysfunction and heart failure. Serum NGAL might be a biomarker for CAD severity. ", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00380-015-0776-8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.5941959", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1095887", 
        "issn": [
          "0910-8327", 
          "1615-2573"
        ], 
        "name": "Heart and Vessels", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "10", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "31"
      }
    ], 
    "name": "Serum neutrophil gelatinase-associated lipocalin concentration reflects severity of coronary artery disease in patients without heart failure and chronic kidney disease", 
    "pagination": "1595-1602", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "b9af1cb9afdd7a2bcc338e105205241df76f0e487bb5e9943f919215752cdb1a"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "26614309"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "8511258"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00380-015-0776-8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1038980920"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00380-015-0776-8", 
      "https://app.dimensions.ai/details/publication/pub.1038980920"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T19:50", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000482.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s00380-015-0776-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00380-015-0776-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00380-015-0776-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00380-015-0776-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00380-015-0776-8'


 

This table displays all metadata directly associated to this object as RDF triples.

303 TRIPLES      21 PREDICATES      82 URIs      41 LITERALS      29 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00380-015-0776-8 schema:about N1466a854950f4cc18f4447bc0bfcae84
2 N1ce46afdfd084b529d30ac1e0b8c5ce5
3 N23e2da25af09483b826912b9a803adbd
4 N2673918b5851461e8c483ae77bcb6a77
5 N2eca34e24eef405497196e63b38873a4
6 N2f7afdfbaa0d4fed9f1f52aabc235ca4
7 N325486db2eb04670b06df40fb15621f7
8 N343770d35abc482786cedb03c3bc1d85
9 N45c96492145b4f748dd2b3377d635a82
10 N4ff93bd04bfb4fd08acf684b308aef59
11 N5097cfde8394409eacdc51af55ef8ca5
12 N8447e6923432415ca322ec1a07959346
13 N8b5ff0c9821d414bb08683a3364d40c4
14 N8dba3914cf544c0f9712c22527d4848c
15 N9ec42a9f123b48f8af33518bc28099c0
16 Nb1a9a198e0714a699241809e112ace6b
17 Nc5badd57e5d74a50880c74ec8f293fd8
18 Nde1e36f96a884be7baee86794f126669
19 Nf28d3ea242c64009b02ceca810d6aac3
20 Nfbe29870c5af4aa6b48cfa1c3ccf006f
21 anzsrc-for:11
22 anzsrc-for:1102
23 schema:author N55206ad3ea914f4b9cf840ece1735503
24 schema:citation sg:pub.10.1007/s00281-009-0149-4
25 sg:pub.10.1007/s00380-012-0270-5
26 sg:pub.10.1007/s00380-014-0538-z
27 sg:pub.10.1007/s10238-004-0037-0
28 https://app.dimensions.ai/details/publication/pub.1077957741
29 https://app.dimensions.ai/details/publication/pub.1082464347
30 https://app.dimensions.ai/details/publication/pub.1082989406
31 https://doi.org/10.1016/j.amjcard.2009.05.023
32 https://doi.org/10.1016/j.ihj.2013.12.015
33 https://doi.org/10.1016/j.ijcard.2011.07.080
34 https://doi.org/10.1016/j.jacc.2008.03.019
35 https://doi.org/10.1016/j.jacc.2009.11.049
36 https://doi.org/10.1016/j.jacc.2010.03.044
37 https://doi.org/10.1016/s0140-6736(05)74811-x
38 https://doi.org/10.1016/s0140-6736(97)06031-5
39 https://doi.org/10.1016/s0828-282x(09)70715-9
40 https://doi.org/10.1046/j.1432-1327.2001.02066.x
41 https://doi.org/10.1053/j.ajkd.2008.12.034
42 https://doi.org/10.1056/nejmoa011053
43 https://doi.org/10.1056/nejmoa0804626
44 https://doi.org/10.1056/nejmra043430
45 https://doi.org/10.1067/mhj.2001.113215
46 https://doi.org/10.1093/eurheartj/eht151
47 https://doi.org/10.1093/eurjhf/hfr087
48 https://doi.org/10.1161/01.atv.0000193567.88685.f4
49 https://doi.org/10.1161/01.cir.87.2.464
50 https://doi.org/10.1161/01.cir.92.3.657
51 https://doi.org/10.1161/hq0302.105287
52 https://doi.org/10.1161/res.90.3.251
53 https://doi.org/10.1172/jci117619
54 https://doi.org/10.1177/039463200702000117
55 https://doi.org/10.1373/clinchem.2007.097360
56 https://doi.org/10.2337/dc09-9033
57 schema:datePublished 2016-10
58 schema:datePublishedReg 2016-10-01
59 schema:description Serum neutrophil gelatinase-associated lipocalin (NGAL) is recognized as a useful biomarker for acute kidney injury. Recently, elevated NGAL levels were reported in patients with heart failure and cardiac events, but the association between serum NGAL and severity of coronary artery disease (CAD) has not been investigated adequately. This study aimed to evaluate the association between serum NGAL concentration and CAD severity in patients without heart failure and chronic kidney disease. Two-hundred thirteen patients [mean age: 66.2 ± 9.2 (SD)] without heart failure and chronic kidney disease (estimated glomerular filtration rate >60 mL/min/1.73 m(2)) who underwent coronary angiography were retrospectively analyzed using the SYNTAX score. The mean concentration of serum NGAL was 134.3 ± 111.3 ng/mL. A statistically significant correlation was observed between serum NGAL levels and the SYNTAX score (R = 0.18, P = 0.0091). Multivariable analysis also showed elevated serum NGAL as an independent risk factor for a high SYNTAX score (P < 0.01). Moreover, we evaluated the association of serum NGAL and brain natriuretic peptide (BNP) with the SYNTAX score. Patients with high levels of serum NGAL (>100 ng/mL) and high levels of BNP (>25 pg/mL) had a higher SYNTAX score (low-low vs. high-high: 13.8 ± 13.4 vs. 20.8 ± 18.9, P < 0.05). Serum NGAL levels were positively and significantly associated with CAD severity, and the evaluation of both serum NGAL and BNP was useful for predicting CAD in patients without renal dysfunction and heart failure. Serum NGAL might be a biomarker for CAD severity.
60 schema:genre research_article
61 schema:inLanguage en
62 schema:isAccessibleForFree false
63 schema:isPartOf N2815e7b9af06488190eac2bee44e78b8
64 N8ded516a7133416f94e0ef1dfe80d761
65 sg:journal.1095887
66 schema:name Serum neutrophil gelatinase-associated lipocalin concentration reflects severity of coronary artery disease in patients without heart failure and chronic kidney disease
67 schema:pagination 1595-1602
68 schema:productId N6f2b73e98112413c9c9a7a0a6ef72dd8
69 N89f77f7a400d4eeca9763cb9ef5eef28
70 Ne053dd54be6544e9a2c87569ad89992e
71 Ne14c790cbf264514b6a5704401cc279d
72 Nea7c126ee91f4889b034e397c8f9af0e
73 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038980920
74 https://doi.org/10.1007/s00380-015-0776-8
75 schema:sdDatePublished 2019-04-10T19:50
76 schema:sdLicense https://scigraph.springernature.com/explorer/license/
77 schema:sdPublisher N8da5f1d104a64981b6d74b572407d974
78 schema:url http://link.springer.com/10.1007/s00380-015-0776-8
79 sgo:license sg:explorer/license/
80 sgo:sdDataset articles
81 rdf:type schema:ScholarlyArticle
82 N023a959aefb4436d94e81c675e72d2f7 rdf:first sg:person.0627060174.54
83 rdf:rest N305b55db8e6e41eba5e4a35564e6ddb7
84 N1466a854950f4cc18f4447bc0bfcae84 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
85 schema:name Multivariate Analysis
86 rdf:type schema:DefinedTerm
87 N1ce46afdfd084b529d30ac1e0b8c5ce5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
88 schema:name Natriuretic Peptide, Brain
89 rdf:type schema:DefinedTerm
90 N1f730c762af84da6bc69de17ebaa2133 rdf:first sg:person.01012024207.33
91 rdf:rest rdf:nil
92 N23e2da25af09483b826912b9a803adbd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
93 schema:name Severity of Illness Index
94 rdf:type schema:DefinedTerm
95 N2673918b5851461e8c483ae77bcb6a77 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
96 schema:name Male
97 rdf:type schema:DefinedTerm
98 N2815e7b9af06488190eac2bee44e78b8 schema:issueNumber 10
99 rdf:type schema:PublicationIssue
100 N2c8e786a5c10420ba9ad7041de3937f8 rdf:first sg:person.01024607122.82
101 rdf:rest Ne1f225f9d3cf488d82f06ebc5186f39c
102 N2eca34e24eef405497196e63b38873a4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
103 schema:name Risk Factors
104 rdf:type schema:DefinedTerm
105 N2f7afdfbaa0d4fed9f1f52aabc235ca4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
106 schema:name Renal Insufficiency, Chronic
107 rdf:type schema:DefinedTerm
108 N305b55db8e6e41eba5e4a35564e6ddb7 rdf:first sg:person.01141035522.67
109 rdf:rest N2c8e786a5c10420ba9ad7041de3937f8
110 N325486db2eb04670b06df40fb15621f7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
111 schema:name Lipocalin-2
112 rdf:type schema:DefinedTerm
113 N343770d35abc482786cedb03c3bc1d85 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
114 schema:name Middle Aged
115 rdf:type schema:DefinedTerm
116 N45c96492145b4f748dd2b3377d635a82 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
117 schema:name Heart Failure
118 rdf:type schema:DefinedTerm
119 N4ff93bd04bfb4fd08acf684b308aef59 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
120 schema:name Humans
121 rdf:type schema:DefinedTerm
122 N5097cfde8394409eacdc51af55ef8ca5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
123 schema:name Prognosis
124 rdf:type schema:DefinedTerm
125 N55206ad3ea914f4b9cf840ece1735503 rdf:first N80d2a3ec0b32467eacf55296238b718f
126 rdf:rest Nbda7d522d01d4d0db76d9fc24d37f3f0
127 N6f2b73e98112413c9c9a7a0a6ef72dd8 schema:name nlm_unique_id
128 schema:value 8511258
129 rdf:type schema:PropertyValue
130 N80d2a3ec0b32467eacf55296238b718f schema:affiliation https://www.grid.ac/institutes/grid.26999.3d
131 schema:familyName Katagiri
132 schema:givenName Mikako
133 rdf:type schema:Person
134 N8447e6923432415ca322ec1a07959346 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
135 schema:name Glomerular Filtration Rate
136 rdf:type schema:DefinedTerm
137 N89f77f7a400d4eeca9763cb9ef5eef28 schema:name doi
138 schema:value 10.1007/s00380-015-0776-8
139 rdf:type schema:PropertyValue
140 N8b5ff0c9821d414bb08683a3364d40c4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
141 schema:name Regression Analysis
142 rdf:type schema:DefinedTerm
143 N8da5f1d104a64981b6d74b572407d974 schema:name Springer Nature - SN SciGraph project
144 rdf:type schema:Organization
145 N8dba3914cf544c0f9712c22527d4848c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
146 schema:name Coronary Angiography
147 rdf:type schema:DefinedTerm
148 N8ded516a7133416f94e0ef1dfe80d761 schema:volumeNumber 31
149 rdf:type schema:PublicationVolume
150 N9ec42a9f123b48f8af33518bc28099c0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
151 schema:name Coronary Artery Disease
152 rdf:type schema:DefinedTerm
153 Nb1a9a198e0714a699241809e112ace6b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
154 schema:name Japan
155 rdf:type schema:DefinedTerm
156 Nbda7d522d01d4d0db76d9fc24d37f3f0 rdf:first sg:person.013234515004.78
157 rdf:rest N023a959aefb4436d94e81c675e72d2f7
158 Nc5badd57e5d74a50880c74ec8f293fd8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
159 schema:name Female
160 rdf:type schema:DefinedTerm
161 Nc9db3e7a65da438ba54001374f9c9c8a rdf:first sg:person.07703025442.98
162 rdf:rest N1f730c762af84da6bc69de17ebaa2133
163 Nde1e36f96a884be7baee86794f126669 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
164 schema:name Biomarkers
165 rdf:type schema:DefinedTerm
166 Ne053dd54be6544e9a2c87569ad89992e schema:name readcube_id
167 schema:value b9af1cb9afdd7a2bcc338e105205241df76f0e487bb5e9943f919215752cdb1a
168 rdf:type schema:PropertyValue
169 Ne14c790cbf264514b6a5704401cc279d schema:name dimensions_id
170 schema:value pub.1038980920
171 rdf:type schema:PropertyValue
172 Ne1f225f9d3cf488d82f06ebc5186f39c rdf:first sg:person.0743252173.26
173 rdf:rest Nc9db3e7a65da438ba54001374f9c9c8a
174 Nea7c126ee91f4889b034e397c8f9af0e schema:name pubmed_id
175 schema:value 26614309
176 rdf:type schema:PropertyValue
177 Nf28d3ea242c64009b02ceca810d6aac3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
178 schema:name Retrospective Studies
179 rdf:type schema:DefinedTerm
180 Nfbe29870c5af4aa6b48cfa1c3ccf006f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
181 schema:name Aged
182 rdf:type schema:DefinedTerm
183 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
184 schema:name Medical and Health Sciences
185 rdf:type schema:DefinedTerm
186 anzsrc-for:1102 schema:inDefinedTermSet anzsrc-for:
187 schema:name Cardiorespiratory Medicine and Haematology
188 rdf:type schema:DefinedTerm
189 sg:grant.5941959 http://pending.schema.org/fundedItem sg:pub.10.1007/s00380-015-0776-8
190 rdf:type schema:MonetaryGrant
191 sg:journal.1095887 schema:issn 0910-8327
192 1615-2573
193 schema:name Heart and Vessels
194 rdf:type schema:Periodical
195 sg:person.01012024207.33 schema:affiliation https://www.grid.ac/institutes/grid.26999.3d
196 schema:familyName Komuro
197 schema:givenName Issei
198 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01012024207.33
199 rdf:type schema:Person
200 sg:person.01024607122.82 schema:affiliation https://www.grid.ac/institutes/grid.26999.3d
201 schema:familyName Kiyosue
202 schema:givenName Arihiro
203 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01024607122.82
204 rdf:type schema:Person
205 sg:person.01141035522.67 schema:affiliation https://www.grid.ac/institutes/grid.26999.3d
206 schema:familyName Myojo
207 schema:givenName Masahiro
208 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01141035522.67
209 rdf:type schema:Person
210 sg:person.013234515004.78 schema:affiliation https://www.grid.ac/institutes/grid.26999.3d
211 schema:familyName Takahashi
212 schema:givenName Masao
213 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013234515004.78
214 rdf:type schema:Person
215 sg:person.0627060174.54 schema:affiliation https://www.grid.ac/institutes/grid.26999.3d
216 schema:familyName Doi
217 schema:givenName Kent
218 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0627060174.54
219 rdf:type schema:Person
220 sg:person.0743252173.26 schema:affiliation https://www.grid.ac/institutes/grid.26999.3d
221 schema:familyName Ando
222 schema:givenName Jiro
223 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0743252173.26
224 rdf:type schema:Person
225 sg:person.07703025442.98 schema:affiliation https://www.grid.ac/institutes/grid.414994.5
226 schema:familyName Hirata
227 schema:givenName Yasunobu
228 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07703025442.98
229 rdf:type schema:Person
230 sg:pub.10.1007/s00281-009-0149-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046477482
231 https://doi.org/10.1007/s00281-009-0149-4
232 rdf:type schema:CreativeWork
233 sg:pub.10.1007/s00380-012-0270-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010084517
234 https://doi.org/10.1007/s00380-012-0270-5
235 rdf:type schema:CreativeWork
236 sg:pub.10.1007/s00380-014-0538-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1031773568
237 https://doi.org/10.1007/s00380-014-0538-z
238 rdf:type schema:CreativeWork
239 sg:pub.10.1007/s10238-004-0037-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029607183
240 https://doi.org/10.1007/s10238-004-0037-0
241 rdf:type schema:CreativeWork
242 https://app.dimensions.ai/details/publication/pub.1077957741 schema:CreativeWork
243 https://app.dimensions.ai/details/publication/pub.1082464347 schema:CreativeWork
244 https://app.dimensions.ai/details/publication/pub.1082989406 schema:CreativeWork
245 https://doi.org/10.1016/j.amjcard.2009.05.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009040364
246 rdf:type schema:CreativeWork
247 https://doi.org/10.1016/j.ihj.2013.12.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003683822
248 rdf:type schema:CreativeWork
249 https://doi.org/10.1016/j.ijcard.2011.07.080 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034513481
250 rdf:type schema:CreativeWork
251 https://doi.org/10.1016/j.jacc.2008.03.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010878307
252 rdf:type schema:CreativeWork
253 https://doi.org/10.1016/j.jacc.2009.11.049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043674507
254 rdf:type schema:CreativeWork
255 https://doi.org/10.1016/j.jacc.2010.03.044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002440024
256 rdf:type schema:CreativeWork
257 https://doi.org/10.1016/s0140-6736(05)74811-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1043421666
258 rdf:type schema:CreativeWork
259 https://doi.org/10.1016/s0140-6736(97)06031-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042410407
260 rdf:type schema:CreativeWork
261 https://doi.org/10.1016/s0828-282x(09)70715-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006948442
262 rdf:type schema:CreativeWork
263 https://doi.org/10.1046/j.1432-1327.2001.02066.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1053000900
264 rdf:type schema:CreativeWork
265 https://doi.org/10.1053/j.ajkd.2008.12.034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000437042
266 rdf:type schema:CreativeWork
267 https://doi.org/10.1056/nejmoa011053 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011170971
268 rdf:type schema:CreativeWork
269 https://doi.org/10.1056/nejmoa0804626 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028585181
270 rdf:type schema:CreativeWork
271 https://doi.org/10.1056/nejmra043430 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027877419
272 rdf:type schema:CreativeWork
273 https://doi.org/10.1067/mhj.2001.113215 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036301480
274 rdf:type schema:CreativeWork
275 https://doi.org/10.1093/eurheartj/eht151 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026649630
276 rdf:type schema:CreativeWork
277 https://doi.org/10.1093/eurjhf/hfr087 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045912712
278 rdf:type schema:CreativeWork
279 https://doi.org/10.1161/01.atv.0000193567.88685.f4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013266389
280 rdf:type schema:CreativeWork
281 https://doi.org/10.1161/01.cir.87.2.464 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031556822
282 rdf:type schema:CreativeWork
283 https://doi.org/10.1161/01.cir.92.3.657 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063336462
284 rdf:type schema:CreativeWork
285 https://doi.org/10.1161/hq0302.105287 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034337129
286 rdf:type schema:CreativeWork
287 https://doi.org/10.1161/res.90.3.251 schema:sameAs https://app.dimensions.ai/details/publication/pub.1075003270
288 rdf:type schema:CreativeWork
289 https://doi.org/10.1172/jci117619 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046171761
290 rdf:type schema:CreativeWork
291 https://doi.org/10.1177/039463200702000117 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028158919
292 rdf:type schema:CreativeWork
293 https://doi.org/10.1373/clinchem.2007.097360 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012810141
294 rdf:type schema:CreativeWork
295 https://doi.org/10.2337/dc09-9033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034182990
296 rdf:type schema:CreativeWork
297 https://www.grid.ac/institutes/grid.26999.3d schema:alternateName University of Tokyo
298 schema:name Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, 113-8655, Tokyo, Japan
299 Department of Critical Care Medicine, The University of Tokyo, Tokyo, Japan
300 rdf:type schema:Organization
301 https://www.grid.ac/institutes/grid.414994.5 schema:alternateName Tokyo Teishin hospital
302 schema:name Tokyo Teishin Hospital, Tokyo, Japan
303 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...