N-terminal pro-brain natriuretic peptide could be a marker of subclinical atherosclerosis in patients with type 2 diabetes View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2012-01-11

AUTHORS

Takafumi Senmaru, Michiaki Fukui, Muhei Tanaka, Kazumi Sakabe, Emi Ushigome, Mai Asano, Masahiro Yamazaki, Goji Hasegawa, Naoto Nakamura

ABSTRACT

N-terminal pro-brain natriuretic peptide (NT-proBNP), which is a useful biomarker of chronic heart failure, has been shown to be a strong predictor of cardiovascular mortality. The aim of this study was to evaluate the relationships between NT-proBNP and markers of subclinical atherosclerosis in patients with type 2 diabetes. Relationships of NT-proBNP to pulse wave velocity (PWV) or ankle-brachial index (ABI) as well as to various parameters, including body mass index, blood pressure, serum lipid concentration, serum uric acid concentration, and glycemic control (hemoglobin A1c), age, hemoglobin, serum creatinine concentration, severity of diabetic nephropathy or retinopathy, current treatment of diabetes, cardiothoracic ratio on chest radiograph, presence of left ventricular hypertrophy and/or ST-T changes evaluated by electrocardiograph, smoking status and presence of cardiovascular disease were investigated in 323 consecutive patients with type 2 diabetes. Log (NT-proBNP) correlated positively with PWV (r = 0.283, p < 0.0001) and correlated negatively with ABI (r = −0.144, p = 0.0094). Multiple regression analysis demonstrated that age (β = 0.200, p = 0.0033), systolic blood pressure (β = 0.246, p < 0.0001), total cholesterol (β = −0.135, p = 0.0326), uric acid (β = 0.133, p = 0.0462), creatinine (β = −0.184, p = 0.0122), smoking status (β = −0.129, p = 0.0499) and log (NT-proBNP) (β = 0.177, p = 0.0149) were independently correlated with PWV and that systolic blood pressure (β = −0.145, p = 0.0310), log triglyceride (β = −0.151, p = 0.0397) and log (NT-proBNP) (β = −0.207, p = 0.0094) were independently correlated with ABI. In conclusion, NT-proBNP could be a marker of subclinical atherosclerosis in patients with type 2 diabetes. More... »

PAGES

151-156

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00380-011-0227-0

DOI

http://dx.doi.org/10.1007/s00380-011-0227-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1040383158

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/22234513


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Cardiorespiratory Medicine and Haematology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Ankle Brachial Index", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Asymptomatic Diseases", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Atherosclerosis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biomarkers", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cross-Sectional Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Diabetes Mellitus, Type 2", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Diabetic Angiopathies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Hemodynamics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Linear Models", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Multivariate Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Natriuretic Peptide, Brain", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Peptide Fragments", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Predictive Value of Tests", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pulse Wave Analysis", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, 602-8566, Kyoto, Japan", 
          "id": "http://www.grid.ac/institutes/grid.272458.e", 
          "name": [
            "Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, 602-8566, Kyoto, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Senmaru", 
        "givenName": "Takafumi", 
        "id": "sg:person.0652364632.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0652364632.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, 602-8566, Kyoto, Japan", 
          "id": "http://www.grid.ac/institutes/grid.272458.e", 
          "name": [
            "Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, 602-8566, Kyoto, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fukui", 
        "givenName": "Michiaki", 
        "id": "sg:person.016357516722.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016357516722.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, 602-8566, Kyoto, Japan", 
          "id": "http://www.grid.ac/institutes/grid.272458.e", 
          "name": [
            "Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, 602-8566, Kyoto, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tanaka", 
        "givenName": "Muhei", 
        "id": "sg:person.0703420760.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0703420760.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, 602-8566, Kyoto, Japan", 
          "id": "http://www.grid.ac/institutes/grid.272458.e", 
          "name": [
            "Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, 602-8566, Kyoto, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sakabe", 
        "givenName": "Kazumi", 
        "id": "sg:person.01343727570.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01343727570.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, 602-8566, Kyoto, Japan", 
          "id": "http://www.grid.ac/institutes/grid.272458.e", 
          "name": [
            "Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, 602-8566, Kyoto, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ushigome", 
        "givenName": "Emi", 
        "id": "sg:person.01102727762.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01102727762.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, 602-8566, Kyoto, Japan", 
          "id": "http://www.grid.ac/institutes/grid.272458.e", 
          "name": [
            "Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, 602-8566, Kyoto, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Asano", 
        "givenName": "Mai", 
        "id": "sg:person.01077516505.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01077516505.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, 602-8566, Kyoto, Japan", 
          "id": "http://www.grid.ac/institutes/grid.272458.e", 
          "name": [
            "Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, 602-8566, Kyoto, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yamazaki", 
        "givenName": "Masahiro", 
        "id": "sg:person.01103041632.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01103041632.87"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, 602-8566, Kyoto, Japan", 
          "id": "http://www.grid.ac/institutes/grid.272458.e", 
          "name": [
            "Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, 602-8566, Kyoto, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hasegawa", 
        "givenName": "Goji", 
        "id": "sg:person.01162763674.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01162763674.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, 602-8566, Kyoto, Japan", 
          "id": "http://www.grid.ac/institutes/grid.272458.e", 
          "name": [
            "Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, 602-8566, Kyoto, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nakamura", 
        "givenName": "Naoto", 
        "id": "sg:person.0677442163.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0677442163.58"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf00404802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010923908", 
          "https://doi.org/10.1007/bf00404802"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00380-010-0080-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007776302", 
          "https://doi.org/10.1007/s00380-010-0080-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00125-006-0359-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049768711", 
          "https://doi.org/10.1007/s00125-006-0359-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00380-010-0066-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000311642", 
          "https://doi.org/10.1007/s00380-010-0066-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00380-010-0063-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043377098", 
          "https://doi.org/10.1007/s00380-010-0063-7"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012-01-11", 
    "datePublishedReg": "2012-01-11", 
    "description": "N-terminal pro-brain natriuretic peptide (NT-proBNP), which is a useful biomarker of chronic heart failure, has been shown to be a strong predictor of cardiovascular mortality. The aim of this study was to evaluate the relationships between NT-proBNP and markers of subclinical atherosclerosis in patients with type 2 diabetes. Relationships of NT-proBNP to pulse wave velocity (PWV) or ankle-brachial index (ABI) as well as to various parameters, including body mass index, blood pressure, serum lipid concentration, serum uric acid concentration, and glycemic control (hemoglobin A1c), age, hemoglobin, serum creatinine concentration, severity of diabetic nephropathy or retinopathy, current treatment of diabetes, cardiothoracic ratio on chest radiograph, presence of left ventricular hypertrophy and/or ST-T changes evaluated by electrocardiograph, smoking status and presence of cardiovascular disease were investigated in 323 consecutive patients with type 2 diabetes. Log (NT-proBNP) correlated positively with PWV (r\u00a0=\u00a00.283, p\u00a0<\u00a00.0001) and correlated negatively with ABI (r\u00a0=\u00a0\u22120.144, p\u00a0=\u00a00.0094). Multiple regression analysis demonstrated that age (\u03b2\u00a0=\u00a00.200, p\u00a0=\u00a00.0033), systolic blood pressure (\u03b2\u00a0=\u00a00.246, p\u00a0<\u00a00.0001), total cholesterol (\u03b2\u00a0=\u00a0\u22120.135, p\u00a0=\u00a00.0326), uric acid (\u03b2\u00a0=\u00a00.133, p\u00a0=\u00a00.0462), creatinine (\u03b2\u00a0=\u00a0\u22120.184, p\u00a0=\u00a00.0122), smoking status (\u03b2\u00a0=\u00a0\u22120.129, p\u00a0=\u00a00.0499) and log (NT-proBNP) (\u03b2\u00a0=\u00a00.177, p\u00a0=\u00a00.0149) were independently correlated with PWV and that systolic blood pressure (\u03b2\u00a0=\u00a0\u22120.145, p\u00a0=\u00a00.0310), log triglyceride (\u03b2\u00a0=\u00a0\u22120.151, p\u00a0=\u00a00.0397) and log (NT-proBNP) (\u03b2\u00a0=\u00a0\u22120.207, p\u00a0=\u00a00.0094) were independently correlated with ABI. In conclusion, NT-proBNP could be a marker of subclinical atherosclerosis in patients with type 2 diabetes.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00380-011-0227-0", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1095887", 
        "issn": [
          "0910-8327", 
          "1615-2573"
        ], 
        "name": "Heart and Vessels", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "28"
      }
    ], 
    "keywords": [
      "ankle-brachial index", 
      "type 2 diabetes", 
      "terminal pro-brain natriuretic peptide", 
      "pro-brain natriuretic peptide", 
      "systolic blood pressure", 
      "NT-proBNP", 
      "subclinical atherosclerosis", 
      "blood pressure", 
      "smoking status", 
      "natriuretic peptide", 
      "serum uric acid concentration", 
      "chronic heart failure", 
      "serum lipid concentrations", 
      "serum creatinine concentration", 
      "left ventricular hypertrophy", 
      "body mass index", 
      "uric acid concentration", 
      "heart failure", 
      "cardiovascular mortality", 
      "glycemic control", 
      "diabetic nephropathy", 
      "consecutive patients", 
      "ventricular hypertrophy", 
      "total cholesterol", 
      "mass index", 
      "log triglycerides", 
      "creatinine concentration", 
      "chest radiographs", 
      "cardiovascular disease", 
      "current treatment", 
      "useful biomarker", 
      "diabetes", 
      "patients", 
      "atherosclerosis", 
      "lipid concentrations", 
      "uric acid", 
      "strongest predictor", 
      "multiple regression analysis", 
      "regression analysis", 
      "markers", 
      "PWV", 
      "age", 
      "status", 
      "nephropathy", 
      "creatinine", 
      "hypertrophy", 
      "acid concentration", 
      "triglycerides", 
      "mortality", 
      "radiographs", 
      "peptides", 
      "disease", 
      "cholesterol", 
      "biomarkers", 
      "severity", 
      "hemoglobin", 
      "index", 
      "treatment", 
      "wave velocity", 
      "predictors", 
      "pressure", 
      "electrocardiograph", 
      "concentration", 
      "conclusion", 
      "failure", 
      "presence", 
      "aim", 
      "control", 
      "study", 
      "relationship", 
      "ST", 
      "acid", 
      "changes", 
      "ratio", 
      "analysis", 
      "parameters", 
      "logs", 
      "velocity"
    ], 
    "name": "N-terminal pro-brain natriuretic peptide could be a marker of subclinical atherosclerosis in patients with type 2 diabetes", 
    "pagination": "151-156", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1040383158"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00380-011-0227-0"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "22234513"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00380-011-0227-0", 
      "https://app.dimensions.ai/details/publication/pub.1040383158"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-20T07:27", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_573.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00380-011-0227-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00380-011-0227-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00380-011-0227-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00380-011-0227-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00380-011-0227-0'


 

This table displays all metadata directly associated to this object as RDF triples.

292 TRIPLES      22 PREDICATES      128 URIs      115 LITERALS      26 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00380-011-0227-0 schema:about N11515850b93d4b2cbb9ac57d378e6ab8
2 N23c397e3ee69455f9936862c67a3be48
3 N2aa700b47df741c79849628f2e0f2df8
4 N4781babcbb7c4f288690329c2f5958c2
5 N4d2dd50aac1e46a68ac27b3d1920b191
6 N526086b9a3864b0f80d750a7d3c40c8a
7 N73af4bcf854b47888069c90244306c29
8 N7b72586ff8784009976bf16a78514b2b
9 N7e7313720a0d4de9bfcf6edadf1ac808
10 N84f325cf9ec348cd931a9bfccedb84e2
11 N9f3164fa6833448f8bf158a3c7a788cf
12 Na0ef18e9bdb14e74b3bef5001a0fa11a
13 Nb0aec1e56969474696eb1cb118e23012
14 Nba668f8965114a0097e5ffbfaab25345
15 Nbe79777c4673432681a09d984cffa5ee
16 Nc2470f1344214728bf2733ff0e9f87b0
17 Ne2e0aedb7ed64532b818110ced70e04c
18 Nf75d160f984a4428b4e4f5f47cedef09
19 Nfeb0e1ee68b44753831c443be40abf37
20 anzsrc-for:11
21 anzsrc-for:1102
22 schema:author Ndfb5e4570e82431a9889202052b50aed
23 schema:citation sg:pub.10.1007/bf00404802
24 sg:pub.10.1007/s00125-006-0359-4
25 sg:pub.10.1007/s00380-010-0063-7
26 sg:pub.10.1007/s00380-010-0066-4
27 sg:pub.10.1007/s00380-010-0080-6
28 schema:datePublished 2012-01-11
29 schema:datePublishedReg 2012-01-11
30 schema:description N-terminal pro-brain natriuretic peptide (NT-proBNP), which is a useful biomarker of chronic heart failure, has been shown to be a strong predictor of cardiovascular mortality. The aim of this study was to evaluate the relationships between NT-proBNP and markers of subclinical atherosclerosis in patients with type 2 diabetes. Relationships of NT-proBNP to pulse wave velocity (PWV) or ankle-brachial index (ABI) as well as to various parameters, including body mass index, blood pressure, serum lipid concentration, serum uric acid concentration, and glycemic control (hemoglobin A1c), age, hemoglobin, serum creatinine concentration, severity of diabetic nephropathy or retinopathy, current treatment of diabetes, cardiothoracic ratio on chest radiograph, presence of left ventricular hypertrophy and/or ST-T changes evaluated by electrocardiograph, smoking status and presence of cardiovascular disease were investigated in 323 consecutive patients with type 2 diabetes. Log (NT-proBNP) correlated positively with PWV (r = 0.283, p < 0.0001) and correlated negatively with ABI (r = −0.144, p = 0.0094). Multiple regression analysis demonstrated that age (β = 0.200, p = 0.0033), systolic blood pressure (β = 0.246, p < 0.0001), total cholesterol (β = −0.135, p = 0.0326), uric acid (β = 0.133, p = 0.0462), creatinine (β = −0.184, p = 0.0122), smoking status (β = −0.129, p = 0.0499) and log (NT-proBNP) (β = 0.177, p = 0.0149) were independently correlated with PWV and that systolic blood pressure (β = −0.145, p = 0.0310), log triglyceride (β = −0.151, p = 0.0397) and log (NT-proBNP) (β = −0.207, p = 0.0094) were independently correlated with ABI. In conclusion, NT-proBNP could be a marker of subclinical atherosclerosis in patients with type 2 diabetes.
31 schema:genre article
32 schema:inLanguage en
33 schema:isAccessibleForFree false
34 schema:isPartOf Nca2bb2b1db774998a0296331a68a0a24
35 Nd2003ce5aa254a58b86a002c7b5b4de4
36 sg:journal.1095887
37 schema:keywords NT-proBNP
38 PWV
39 ST
40 acid
41 acid concentration
42 age
43 aim
44 analysis
45 ankle-brachial index
46 atherosclerosis
47 biomarkers
48 blood pressure
49 body mass index
50 cardiovascular disease
51 cardiovascular mortality
52 changes
53 chest radiographs
54 cholesterol
55 chronic heart failure
56 concentration
57 conclusion
58 consecutive patients
59 control
60 creatinine
61 creatinine concentration
62 current treatment
63 diabetes
64 diabetic nephropathy
65 disease
66 electrocardiograph
67 failure
68 glycemic control
69 heart failure
70 hemoglobin
71 hypertrophy
72 index
73 left ventricular hypertrophy
74 lipid concentrations
75 log triglycerides
76 logs
77 markers
78 mass index
79 mortality
80 multiple regression analysis
81 natriuretic peptide
82 nephropathy
83 parameters
84 patients
85 peptides
86 predictors
87 presence
88 pressure
89 pro-brain natriuretic peptide
90 radiographs
91 ratio
92 regression analysis
93 relationship
94 serum creatinine concentration
95 serum lipid concentrations
96 serum uric acid concentration
97 severity
98 smoking status
99 status
100 strongest predictor
101 study
102 subclinical atherosclerosis
103 systolic blood pressure
104 terminal pro-brain natriuretic peptide
105 total cholesterol
106 treatment
107 triglycerides
108 type 2 diabetes
109 uric acid
110 uric acid concentration
111 useful biomarker
112 velocity
113 ventricular hypertrophy
114 wave velocity
115 schema:name N-terminal pro-brain natriuretic peptide could be a marker of subclinical atherosclerosis in patients with type 2 diabetes
116 schema:pagination 151-156
117 schema:productId N2ce5961f6de14cba827506e4524ebf1f
118 N3fcbc055fc88416f9d8e56369e83ce94
119 Nc42f98575ab94f33841405952aa1b6e7
120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040383158
121 https://doi.org/10.1007/s00380-011-0227-0
122 schema:sdDatePublished 2022-05-20T07:27
123 schema:sdLicense https://scigraph.springernature.com/explorer/license/
124 schema:sdPublisher Nebbbdbc1b2f64e94974de6df3e410cd2
125 schema:url https://doi.org/10.1007/s00380-011-0227-0
126 sgo:license sg:explorer/license/
127 sgo:sdDataset articles
128 rdf:type schema:ScholarlyArticle
129 N0513249888c14697a47dd94439dbf866 rdf:first sg:person.01077516505.40
130 rdf:rest N41a7c962db1c4b009cf8cd63544fa0a5
131 N11515850b93d4b2cbb9ac57d378e6ab8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name Biomarkers
133 rdf:type schema:DefinedTerm
134 N1ad22f4930fa4c6f83d1534f6b426013 rdf:first sg:person.0677442163.58
135 rdf:rest rdf:nil
136 N23c397e3ee69455f9936862c67a3be48 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
137 schema:name Middle Aged
138 rdf:type schema:DefinedTerm
139 N2aa700b47df741c79849628f2e0f2df8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
140 schema:name Cross-Sectional Studies
141 rdf:type schema:DefinedTerm
142 N2ce5961f6de14cba827506e4524ebf1f schema:name doi
143 schema:value 10.1007/s00380-011-0227-0
144 rdf:type schema:PropertyValue
145 N3fcbc055fc88416f9d8e56369e83ce94 schema:name pubmed_id
146 schema:value 22234513
147 rdf:type schema:PropertyValue
148 N41a7c962db1c4b009cf8cd63544fa0a5 rdf:first sg:person.01103041632.87
149 rdf:rest N6aa538f5a6c245b4b94692daff08e6ef
150 N4781babcbb7c4f288690329c2f5958c2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
151 schema:name Predictive Value of Tests
152 rdf:type schema:DefinedTerm
153 N4cb237ba4893445e8a49fe3cdb0ab529 rdf:first sg:person.016357516722.38
154 rdf:rest Ncc0ceed720f449849c752002e2d10367
155 N4d2dd50aac1e46a68ac27b3d1920b191 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
156 schema:name Male
157 rdf:type schema:DefinedTerm
158 N526086b9a3864b0f80d750a7d3c40c8a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
159 schema:name Pulse Wave Analysis
160 rdf:type schema:DefinedTerm
161 N6aa538f5a6c245b4b94692daff08e6ef rdf:first sg:person.01162763674.43
162 rdf:rest N1ad22f4930fa4c6f83d1534f6b426013
163 N73af4bcf854b47888069c90244306c29 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
164 schema:name Natriuretic Peptide, Brain
165 rdf:type schema:DefinedTerm
166 N796f1b5671c94792aa69937590d33ed6 rdf:first sg:person.01343727570.28
167 rdf:rest Nfe2bfc899c80458dab8c081c01bef96c
168 N7b72586ff8784009976bf16a78514b2b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
169 schema:name Diabetic Angiopathies
170 rdf:type schema:DefinedTerm
171 N7e7313720a0d4de9bfcf6edadf1ac808 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
172 schema:name Peptide Fragments
173 rdf:type schema:DefinedTerm
174 N84f325cf9ec348cd931a9bfccedb84e2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
175 schema:name Hemodynamics
176 rdf:type schema:DefinedTerm
177 N9f3164fa6833448f8bf158a3c7a788cf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
178 schema:name Humans
179 rdf:type schema:DefinedTerm
180 Na0ef18e9bdb14e74b3bef5001a0fa11a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
181 schema:name Diabetes Mellitus, Type 2
182 rdf:type schema:DefinedTerm
183 Nb0aec1e56969474696eb1cb118e23012 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
184 schema:name Atherosclerosis
185 rdf:type schema:DefinedTerm
186 Nba668f8965114a0097e5ffbfaab25345 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
187 schema:name Multivariate Analysis
188 rdf:type schema:DefinedTerm
189 Nbe79777c4673432681a09d984cffa5ee schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
190 schema:name Ankle Brachial Index
191 rdf:type schema:DefinedTerm
192 Nc2470f1344214728bf2733ff0e9f87b0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
193 schema:name Female
194 rdf:type schema:DefinedTerm
195 Nc42f98575ab94f33841405952aa1b6e7 schema:name dimensions_id
196 schema:value pub.1040383158
197 rdf:type schema:PropertyValue
198 Nca2bb2b1db774998a0296331a68a0a24 schema:issueNumber 2
199 rdf:type schema:PublicationIssue
200 Ncc0ceed720f449849c752002e2d10367 rdf:first sg:person.0703420760.35
201 rdf:rest N796f1b5671c94792aa69937590d33ed6
202 Nd2003ce5aa254a58b86a002c7b5b4de4 schema:volumeNumber 28
203 rdf:type schema:PublicationVolume
204 Ndfb5e4570e82431a9889202052b50aed rdf:first sg:person.0652364632.31
205 rdf:rest N4cb237ba4893445e8a49fe3cdb0ab529
206 Ne2e0aedb7ed64532b818110ced70e04c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
207 schema:name Asymptomatic Diseases
208 rdf:type schema:DefinedTerm
209 Nebbbdbc1b2f64e94974de6df3e410cd2 schema:name Springer Nature - SN SciGraph project
210 rdf:type schema:Organization
211 Nf75d160f984a4428b4e4f5f47cedef09 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
212 schema:name Linear Models
213 rdf:type schema:DefinedTerm
214 Nfe2bfc899c80458dab8c081c01bef96c rdf:first sg:person.01102727762.08
215 rdf:rest N0513249888c14697a47dd94439dbf866
216 Nfeb0e1ee68b44753831c443be40abf37 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
217 schema:name Aged
218 rdf:type schema:DefinedTerm
219 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
220 schema:name Medical and Health Sciences
221 rdf:type schema:DefinedTerm
222 anzsrc-for:1102 schema:inDefinedTermSet anzsrc-for:
223 schema:name Cardiorespiratory Medicine and Haematology
224 rdf:type schema:DefinedTerm
225 sg:journal.1095887 schema:issn 0910-8327
226 1615-2573
227 schema:name Heart and Vessels
228 schema:publisher Springer Nature
229 rdf:type schema:Periodical
230 sg:person.01077516505.40 schema:affiliation grid-institutes:grid.272458.e
231 schema:familyName Asano
232 schema:givenName Mai
233 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01077516505.40
234 rdf:type schema:Person
235 sg:person.01102727762.08 schema:affiliation grid-institutes:grid.272458.e
236 schema:familyName Ushigome
237 schema:givenName Emi
238 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01102727762.08
239 rdf:type schema:Person
240 sg:person.01103041632.87 schema:affiliation grid-institutes:grid.272458.e
241 schema:familyName Yamazaki
242 schema:givenName Masahiro
243 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01103041632.87
244 rdf:type schema:Person
245 sg:person.01162763674.43 schema:affiliation grid-institutes:grid.272458.e
246 schema:familyName Hasegawa
247 schema:givenName Goji
248 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01162763674.43
249 rdf:type schema:Person
250 sg:person.01343727570.28 schema:affiliation grid-institutes:grid.272458.e
251 schema:familyName Sakabe
252 schema:givenName Kazumi
253 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01343727570.28
254 rdf:type schema:Person
255 sg:person.016357516722.38 schema:affiliation grid-institutes:grid.272458.e
256 schema:familyName Fukui
257 schema:givenName Michiaki
258 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016357516722.38
259 rdf:type schema:Person
260 sg:person.0652364632.31 schema:affiliation grid-institutes:grid.272458.e
261 schema:familyName Senmaru
262 schema:givenName Takafumi
263 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0652364632.31
264 rdf:type schema:Person
265 sg:person.0677442163.58 schema:affiliation grid-institutes:grid.272458.e
266 schema:familyName Nakamura
267 schema:givenName Naoto
268 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0677442163.58
269 rdf:type schema:Person
270 sg:person.0703420760.35 schema:affiliation grid-institutes:grid.272458.e
271 schema:familyName Tanaka
272 schema:givenName Muhei
273 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0703420760.35
274 rdf:type schema:Person
275 sg:pub.10.1007/bf00404802 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010923908
276 https://doi.org/10.1007/bf00404802
277 rdf:type schema:CreativeWork
278 sg:pub.10.1007/s00125-006-0359-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049768711
279 https://doi.org/10.1007/s00125-006-0359-4
280 rdf:type schema:CreativeWork
281 sg:pub.10.1007/s00380-010-0063-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043377098
282 https://doi.org/10.1007/s00380-010-0063-7
283 rdf:type schema:CreativeWork
284 sg:pub.10.1007/s00380-010-0066-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000311642
285 https://doi.org/10.1007/s00380-010-0066-4
286 rdf:type schema:CreativeWork
287 sg:pub.10.1007/s00380-010-0080-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007776302
288 https://doi.org/10.1007/s00380-010-0080-6
289 rdf:type schema:CreativeWork
290 grid-institutes:grid.272458.e schema:alternateName Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, 602-8566, Kyoto, Japan
291 schema:name Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, 602-8566, Kyoto, Japan
292 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...