Further-Adjusted Long-Term Temperature Series in China Based on MASH View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-08

AUTHORS

Zhen Li, Zhongwei Yan, Lijuan Cao, Phil D. Jones

ABSTRACT

A set of homogenized monthly mean surface air temperature (SAT) series at 32 stations in China back to the 19th century had previously been developed based on the RHtest method by Cao et al., but some inhomogeneities remained in the dataset. The present study produces a further-adjusted and updated dataset based on the Multiple Analysis of Series for Homogenization (MASH) method. The MASH procedure detects 33 monthly temperature records as erroneous outliers and 152 meaningful break points in the monthly SAT series since 1924 at 28 stations. The inhomogeneous parts are then adjusted relative to the latest homogeneous part of the series. The new data show significant warming trends during 1924–2016 at all the stations, ranging from 0.48 to 3.57°C (100 yr)−1, with a regional mean trend of 1.65°C (100 yr)−1; whereas, the previous results ranged from a slight cooling at two stations to considerable warming, up to 4.5°C (100 yr)−1. It is suggested that the further-adjusted data are a better representation of the large-scale pattern of climate change in the region for the past century. The new data are available online at https://doi.org/www.dx.doi.org/10.11922/sciencedb.516. More... »

PAGES

909-917

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00376-018-7280-x

DOI

http://dx.doi.org/10.1007/s00376-018-7280-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1104423321


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0403", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Geology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Atmospheric Physics", 
          "id": "https://www.grid.ac/institutes/grid.424023.3", 
          "name": [
            "Key Laboratory of Regional Climate-Environment in Temperate East Asia, Institute of Atmospheric Physics, 100029, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Zhen", 
        "id": "sg:person.010044030651.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010044030651.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Chinese Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.410726.6", 
          "name": [
            "Key Laboratory of Regional Climate-Environment in Temperate East Asia, Institute of Atmospheric Physics, 100029, Beijing, China", 
            "University of the Chinese Academy of Sciences, 100049, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yan", 
        "givenName": "Zhongwei", 
        "id": "sg:person.011271135136.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011271135136.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "China Meteorological Administration", 
          "id": "https://www.grid.ac/institutes/grid.8658.3", 
          "name": [
            "National Meteorological Information Center, China Meteorological Administration, 100081, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cao", 
        "givenName": "Lijuan", 
        "id": "sg:person.015315233177.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015315233177.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "King Abdulaziz University", 
          "id": "https://www.grid.ac/institutes/grid.412125.1", 
          "name": [
            "Climatic Research Unit, University of East Anglia, NR4 7TJ, Norwich, Norfolk, UK", 
            "Center of Excellence for Climate Change Research/Department of Meteorology, King Abdulaziz University, 21589, Jeddah, Saudi Arabia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jones", 
        "givenName": "Phil D.", 
        "id": "sg:person.0721646017.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0721646017.58"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1029/2005jd006548", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000063736"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0442(2003)016<0206:halssa>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000480591"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2011jd017139", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000480607"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/bams-d-16-0092.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003415604"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/joc.610", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007494853"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2011jd016187", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010819374"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1097-0088(199611)16:11<1227::aid-joc82>3.0.co;2-p", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014784948"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/joc.3756", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016380812"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0442(1994)007<1794:hsatva>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018967105"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/16742834.2009.11446802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023381622"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11434-010-3209-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027101108", 
          "https://doi.org/10.1007/s11434-010-3209-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11434-010-3209-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027101108", 
          "https://doi.org/10.1007/s11434-010-3209-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00376-010-0018-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030779660", 
          "https://doi.org/10.1007/s00376-010-0018-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jgrd.50615", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031359294"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13351-016-5054-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032080184", 
          "https://doi.org/10.1007/s13351-016-5054-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00376-015-4257-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035860380", 
          "https://doi.org/10.1007/s00376-015-4257-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11430-014-4945-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042416069", 
          "https://doi.org/10.1007/s11430-014-4945-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0477(1997)078<2837:aootgh>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053015696"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1748-9326/aa68e8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084174898"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-017-3755-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086125561", 
          "https://doi.org/10.1007/s00382-017-3755-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-017-3755-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086125561", 
          "https://doi.org/10.1007/s00382-017-3755-1"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-08", 
    "datePublishedReg": "2018-08-01", 
    "description": "A set of homogenized monthly mean surface air temperature (SAT) series at 32 stations in China back to the 19th century had previously been developed based on the RHtest method by Cao et al., but some inhomogeneities remained in the dataset. The present study produces a further-adjusted and updated dataset based on the Multiple Analysis of Series for Homogenization (MASH) method. The MASH procedure detects 33 monthly temperature records as erroneous outliers and 152 meaningful break points in the monthly SAT series since 1924 at 28 stations. The inhomogeneous parts are then adjusted relative to the latest homogeneous part of the series. The new data show significant warming trends during 1924\u20132016 at all the stations, ranging from 0.48 to 3.57\u00b0C (100 yr)\u22121, with a regional mean trend of 1.65\u00b0C (100 yr)\u22121; whereas, the previous results ranged from a slight cooling at two stations to considerable warming, up to 4.5\u00b0C (100 yr)\u22121. It is suggested that the further-adjusted data are a better representation of the large-scale pattern of climate change in the region for the past century. The new data are available online at https://doi.org/www.dx.doi.org/10.11922/sciencedb.516.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00376-018-7280-x", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1135901", 
        "issn": [
          "0256-1530", 
          "1861-9533"
        ], 
        "name": "Advances in Atmospheric Sciences", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "8", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "35"
      }
    ], 
    "name": "Further-Adjusted Long-Term Temperature Series in China Based on MASH", 
    "pagination": "909-917", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "347e896a2aaeb89baf34944d57b9060ff3e3da255bfe5b2b579cc8955e887abf"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00376-018-7280-x"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1104423321"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00376-018-7280-x", 
      "https://app.dimensions.ai/details/publication/pub.1104423321"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T16:00", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000569.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00376-018-7280-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00376-018-7280-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00376-018-7280-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00376-018-7280-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00376-018-7280-x'


 

This table displays all metadata directly associated to this object as RDF triples.

156 TRIPLES      21 PREDICATES      46 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00376-018-7280-x schema:about anzsrc-for:04
2 anzsrc-for:0403
3 schema:author N8f3fe367edab4cb29f9dfb0c9c6567e3
4 schema:citation sg:pub.10.1007/s00376-010-0018-z
5 sg:pub.10.1007/s00376-015-4257-x
6 sg:pub.10.1007/s00382-017-3755-1
7 sg:pub.10.1007/s11430-014-4945-x
8 sg:pub.10.1007/s11434-010-3209-1
9 sg:pub.10.1007/s13351-016-5054-x
10 https://doi.org/10.1002/(sici)1097-0088(199611)16:11<1227::aid-joc82>3.0.co;2-p
11 https://doi.org/10.1002/jgrd.50615
12 https://doi.org/10.1002/joc.3756
13 https://doi.org/10.1002/joc.610
14 https://doi.org/10.1029/2005jd006548
15 https://doi.org/10.1029/2011jd016187
16 https://doi.org/10.1029/2011jd017139
17 https://doi.org/10.1080/16742834.2009.11446802
18 https://doi.org/10.1088/1748-9326/aa68e8
19 https://doi.org/10.1175/1520-0442(1994)007<1794:hsatva>2.0.co;2
20 https://doi.org/10.1175/1520-0442(2003)016<0206:halssa>2.0.co;2
21 https://doi.org/10.1175/1520-0477(1997)078<2837:aootgh>2.0.co;2
22 https://doi.org/10.1175/bams-d-16-0092.1
23 schema:datePublished 2018-08
24 schema:datePublishedReg 2018-08-01
25 schema:description A set of homogenized monthly mean surface air temperature (SAT) series at 32 stations in China back to the 19th century had previously been developed based on the RHtest method by Cao et al., but some inhomogeneities remained in the dataset. The present study produces a further-adjusted and updated dataset based on the Multiple Analysis of Series for Homogenization (MASH) method. The MASH procedure detects 33 monthly temperature records as erroneous outliers and 152 meaningful break points in the monthly SAT series since 1924 at 28 stations. The inhomogeneous parts are then adjusted relative to the latest homogeneous part of the series. The new data show significant warming trends during 1924–2016 at all the stations, ranging from 0.48 to 3.57°C (100 yr)−1, with a regional mean trend of 1.65°C (100 yr)−1; whereas, the previous results ranged from a slight cooling at two stations to considerable warming, up to 4.5°C (100 yr)−1. It is suggested that the further-adjusted data are a better representation of the large-scale pattern of climate change in the region for the past century. The new data are available online at https://doi.org/www.dx.doi.org/10.11922/sciencedb.516.
26 schema:genre research_article
27 schema:inLanguage en
28 schema:isAccessibleForFree true
29 schema:isPartOf N0a1ed8be994f4d50ba407a6481f2fa80
30 Ndc8d3dfe3b464558a9014249a193ae99
31 sg:journal.1135901
32 schema:name Further-Adjusted Long-Term Temperature Series in China Based on MASH
33 schema:pagination 909-917
34 schema:productId N52e8c712a0da437496b82adefa1601af
35 Ndc9f955b236e4e709f4590c5747ed4f0
36 Ne98f63decc5c4911b0cd23cc212af82f
37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104423321
38 https://doi.org/10.1007/s00376-018-7280-x
39 schema:sdDatePublished 2019-04-10T16:00
40 schema:sdLicense https://scigraph.springernature.com/explorer/license/
41 schema:sdPublisher N42a4146ee83a4e6f9df93801fd397f7c
42 schema:url https://link.springer.com/10.1007%2Fs00376-018-7280-x
43 sgo:license sg:explorer/license/
44 sgo:sdDataset articles
45 rdf:type schema:ScholarlyArticle
46 N0a1ed8be994f4d50ba407a6481f2fa80 schema:volumeNumber 35
47 rdf:type schema:PublicationVolume
48 N1912366931e947c38fd38c0ff5544409 rdf:first sg:person.0721646017.58
49 rdf:rest rdf:nil
50 N42a4146ee83a4e6f9df93801fd397f7c schema:name Springer Nature - SN SciGraph project
51 rdf:type schema:Organization
52 N52e8c712a0da437496b82adefa1601af schema:name doi
53 schema:value 10.1007/s00376-018-7280-x
54 rdf:type schema:PropertyValue
55 N8f3fe367edab4cb29f9dfb0c9c6567e3 rdf:first sg:person.010044030651.50
56 rdf:rest Nf1619aeb9d704eaf858f1f5752625c36
57 Nae3335e2e17b4d4e8510537aa6ded9a3 rdf:first sg:person.015315233177.43
58 rdf:rest N1912366931e947c38fd38c0ff5544409
59 Ndc8d3dfe3b464558a9014249a193ae99 schema:issueNumber 8
60 rdf:type schema:PublicationIssue
61 Ndc9f955b236e4e709f4590c5747ed4f0 schema:name dimensions_id
62 schema:value pub.1104423321
63 rdf:type schema:PropertyValue
64 Ne98f63decc5c4911b0cd23cc212af82f schema:name readcube_id
65 schema:value 347e896a2aaeb89baf34944d57b9060ff3e3da255bfe5b2b579cc8955e887abf
66 rdf:type schema:PropertyValue
67 Nf1619aeb9d704eaf858f1f5752625c36 rdf:first sg:person.011271135136.00
68 rdf:rest Nae3335e2e17b4d4e8510537aa6ded9a3
69 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
70 schema:name Earth Sciences
71 rdf:type schema:DefinedTerm
72 anzsrc-for:0403 schema:inDefinedTermSet anzsrc-for:
73 schema:name Geology
74 rdf:type schema:DefinedTerm
75 sg:journal.1135901 schema:issn 0256-1530
76 1861-9533
77 schema:name Advances in Atmospheric Sciences
78 rdf:type schema:Periodical
79 sg:person.010044030651.50 schema:affiliation https://www.grid.ac/institutes/grid.424023.3
80 schema:familyName Li
81 schema:givenName Zhen
82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010044030651.50
83 rdf:type schema:Person
84 sg:person.011271135136.00 schema:affiliation https://www.grid.ac/institutes/grid.410726.6
85 schema:familyName Yan
86 schema:givenName Zhongwei
87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011271135136.00
88 rdf:type schema:Person
89 sg:person.015315233177.43 schema:affiliation https://www.grid.ac/institutes/grid.8658.3
90 schema:familyName Cao
91 schema:givenName Lijuan
92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015315233177.43
93 rdf:type schema:Person
94 sg:person.0721646017.58 schema:affiliation https://www.grid.ac/institutes/grid.412125.1
95 schema:familyName Jones
96 schema:givenName Phil D.
97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0721646017.58
98 rdf:type schema:Person
99 sg:pub.10.1007/s00376-010-0018-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1030779660
100 https://doi.org/10.1007/s00376-010-0018-z
101 rdf:type schema:CreativeWork
102 sg:pub.10.1007/s00376-015-4257-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1035860380
103 https://doi.org/10.1007/s00376-015-4257-x
104 rdf:type schema:CreativeWork
105 sg:pub.10.1007/s00382-017-3755-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086125561
106 https://doi.org/10.1007/s00382-017-3755-1
107 rdf:type schema:CreativeWork
108 sg:pub.10.1007/s11430-014-4945-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1042416069
109 https://doi.org/10.1007/s11430-014-4945-x
110 rdf:type schema:CreativeWork
111 sg:pub.10.1007/s11434-010-3209-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027101108
112 https://doi.org/10.1007/s11434-010-3209-1
113 rdf:type schema:CreativeWork
114 sg:pub.10.1007/s13351-016-5054-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1032080184
115 https://doi.org/10.1007/s13351-016-5054-x
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1002/(sici)1097-0088(199611)16:11<1227::aid-joc82>3.0.co;2-p schema:sameAs https://app.dimensions.ai/details/publication/pub.1014784948
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1002/jgrd.50615 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031359294
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1002/joc.3756 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016380812
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1002/joc.610 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007494853
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1029/2005jd006548 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000063736
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1029/2011jd016187 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010819374
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1029/2011jd017139 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000480607
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1080/16742834.2009.11446802 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023381622
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1088/1748-9326/aa68e8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084174898
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1175/1520-0442(1994)007<1794:hsatva>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018967105
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1175/1520-0442(2003)016<0206:halssa>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000480591
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1175/1520-0477(1997)078<2837:aootgh>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053015696
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1175/bams-d-16-0092.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003415604
142 rdf:type schema:CreativeWork
143 https://www.grid.ac/institutes/grid.410726.6 schema:alternateName University of Chinese Academy of Sciences
144 schema:name Key Laboratory of Regional Climate-Environment in Temperate East Asia, Institute of Atmospheric Physics, 100029, Beijing, China
145 University of the Chinese Academy of Sciences, 100049, Beijing, China
146 rdf:type schema:Organization
147 https://www.grid.ac/institutes/grid.412125.1 schema:alternateName King Abdulaziz University
148 schema:name Center of Excellence for Climate Change Research/Department of Meteorology, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
149 Climatic Research Unit, University of East Anglia, NR4 7TJ, Norwich, Norfolk, UK
150 rdf:type schema:Organization
151 https://www.grid.ac/institutes/grid.424023.3 schema:alternateName Institute of Atmospheric Physics
152 schema:name Key Laboratory of Regional Climate-Environment in Temperate East Asia, Institute of Atmospheric Physics, 100029, Beijing, China
153 rdf:type schema:Organization
154 https://www.grid.ac/institutes/grid.8658.3 schema:alternateName China Meteorological Administration
155 schema:name National Meteorological Information Center, China Meteorological Administration, 100081, Beijing, China
156 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...