Impacts of Anthropogenic Forcings and El Niño on Chinese Extreme Temperatures View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-08

AUTHORS

N. Freychet, S. Sparrow, S. F. B. Tett, M. J. Mineter, G. C. Hegerl, D. C. H. Wallom

ABSTRACT

This study investigates the potential influences of anthropogenic forcings and natural variability on the risk of summer extreme temperatures over China. We use three multi-thousand-member ensemble simulations with different forcings (with or without anthropogenic greenhouse gases and aerosol emissions) to evaluate the human impact, and with sea surface temperature patterns from three different years around the El Niño–Southern Oscillation (ENSO) 2015/16 event (years 2014, 2015 and 2016) to evaluate the impact of natural variability. A generalized extreme value (GEV) distribution is used to fit the ensemble results. Based on these model results, we find that, during the peak of ENSO (2015), daytime extreme temperatures are smaller over the central China region compared to a normal year (2014). During 2016, the risk of nighttime extreme temperatures is largely increased over the eastern coastal region. Both anomalies are of the same magnitude as the anthropogenic influence. Thus, ENSO can amplify or counterbalance (at a regional and annual scale) anthropogenic effects on extreme summer temperatures over China. Changes are mainly due to changes in the GEV location parameter. Thus, anomalies are due to a shift in the distributions and not to a change in temperature variability. More... »

PAGES

994-1002

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00376-018-7258-8

DOI

http://dx.doi.org/10.1007/s00376-018-7258-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1104431795


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0406", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Geography and Environmental Geoscience", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Edinburgh", 
          "id": "https://www.grid.ac/institutes/grid.4305.2", 
          "name": [
            "School of Geosciences, University of Edinburgh, Crew Building, The King\u2019s Buildings, EH9 3FF, Edinburgh, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Freychet", 
        "givenName": "N.", 
        "id": "sg:person.016344130753.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016344130753.83"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Oxford", 
          "id": "https://www.grid.ac/institutes/grid.4991.5", 
          "name": [
            "Oxford e-Research Centre, University of Oxford, OX1 2JD, Oxford, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sparrow", 
        "givenName": "S.", 
        "id": "sg:person.013147101037.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013147101037.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Edinburgh", 
          "id": "https://www.grid.ac/institutes/grid.4305.2", 
          "name": [
            "School of Geosciences, University of Edinburgh, Crew Building, The King\u2019s Buildings, EH9 3FF, Edinburgh, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tett", 
        "givenName": "S. F. B.", 
        "id": "sg:person.01025613710.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01025613710.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Edinburgh", 
          "id": "https://www.grid.ac/institutes/grid.4305.2", 
          "name": [
            "School of Geosciences, University of Edinburgh, Crew Building, The King\u2019s Buildings, EH9 3FF, Edinburgh, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mineter", 
        "givenName": "M. J.", 
        "id": "sg:person.011357255273.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011357255273.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Edinburgh", 
          "id": "https://www.grid.ac/institutes/grid.4305.2", 
          "name": [
            "School of Geosciences, University of Edinburgh, Crew Building, The King\u2019s Buildings, EH9 3FF, Edinburgh, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hegerl", 
        "givenName": "G. C.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Oxford", 
          "id": "https://www.grid.ac/institutes/grid.4991.5", 
          "name": [
            "Oxford e-Research Centre, University of Oxford, OX1 2JD, Oxford, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wallom", 
        "givenName": "D. C. H.", 
        "id": "sg:person.015131374022.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015131374022.11"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.5194/gmd-9-3161-2016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000832415"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/acp-16-9785-2016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001013830"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rse.2010.10.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003124536"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/jcli-d-15-0478.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004010552"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nclimate2927", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011320779", 
          "https://doi.org/10.1038/nclimate2927"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep25721", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012308815", 
          "https://doi.org/10.1038/srep25721"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1132588", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015053580"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0921-8181(03)00026-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019860333"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0921-8181(03)00026-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019860333"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/jcli-d-16-0287.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020272047"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/jcli-d-16-0269.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020853513"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/bams-d-16-0124.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023524002"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2000jd000089", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027009688"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nclimate2976", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028450520", 
          "https://doi.org/10.1038/nclimate2976"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/bams-d-15-00115.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029316956"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/bams-d-16-0158.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034861240"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/joc.4771", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036411518"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/qj.828", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039601605"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1748-9326/11/7/074006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041122918"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-015-2726-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042848069", 
          "https://doi.org/10.1007/s00382-015-2726-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-015-2726-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042848069", 
          "https://doi.org/10.1007/s00382-015-2726-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/jcli-d-14-00808.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043230695"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1748-9326/11/6/064006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051168910"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00704-015-1527-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051288836", 
          "https://doi.org/10.1007/s00704-015-1527-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/jcli-d-12-00277.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052147938"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-016-3158-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053055973", 
          "https://doi.org/10.1007/s00382-016-3158-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-016-3158-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053055973", 
          "https://doi.org/10.1007/s00382-016-3158-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1748-9326/aa5ba3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083764386"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1748-9326/aa69d2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084174904"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/2017gl072908", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084514801"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/2017gl073531", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085123381"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/gmd-10-1849-2017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085180550"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/2016gl072281", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085211062"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.atmosres.2017.05.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085459361"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev-environ-102016-060847", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090905955"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/bams-d-17-0095.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101766632"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1109705929", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4899-4541-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109705929", 
          "https://doi.org/10.1007/978-1-4899-4541-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4899-4541-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109705929", 
          "https://doi.org/10.1007/978-1-4899-4541-9"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-08", 
    "datePublishedReg": "2018-08-01", 
    "description": "This study investigates the potential influences of anthropogenic forcings and natural variability on the risk of summer extreme temperatures over China. We use three multi-thousand-member ensemble simulations with different forcings (with or without anthropogenic greenhouse gases and aerosol emissions) to evaluate the human impact, and with sea surface temperature patterns from three different years around the El Ni\u00f1o\u2013Southern Oscillation (ENSO) 2015/16 event (years 2014, 2015 and 2016) to evaluate the impact of natural variability. A generalized extreme value (GEV) distribution is used to fit the ensemble results. Based on these model results, we find that, during the peak of ENSO (2015), daytime extreme temperatures are smaller over the central China region compared to a normal year (2014). During 2016, the risk of nighttime extreme temperatures is largely increased over the eastern coastal region. Both anomalies are of the same magnitude as the anthropogenic influence. Thus, ENSO can amplify or counterbalance (at a regional and annual scale) anthropogenic effects on extreme summer temperatures over China. Changes are mainly due to changes in the GEV location parameter. Thus, anomalies are due to a shift in the distributions and not to a change in temperature variability.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00376-018-7258-8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1135901", 
        "issn": [
          "0256-1530", 
          "1861-9533"
        ], 
        "name": "Advances in Atmospheric Sciences", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "8", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "35"
      }
    ], 
    "name": "Impacts of Anthropogenic Forcings and El Ni\u00f1o on Chinese Extreme Temperatures", 
    "pagination": "994-1002", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "b1d9cec0db12242f8229dd9c576fcaa1079b3983c3d6ec2acab9c0cf5267ade0"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00376-018-7258-8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1104431795"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00376-018-7258-8", 
      "https://app.dimensions.ai/details/publication/pub.1104431795"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T00:31", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8695_00000604.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00376-018-7258-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00376-018-7258-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00376-018-7258-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00376-018-7258-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00376-018-7258-8'


 

This table displays all metadata directly associated to this object as RDF triples.

209 TRIPLES      21 PREDICATES      62 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00376-018-7258-8 schema:about anzsrc-for:04
2 anzsrc-for:0406
3 schema:author N8d1c8344828e45569aa671b01da251ec
4 schema:citation sg:pub.10.1007/978-1-4899-4541-9
5 sg:pub.10.1007/s00382-015-2726-7
6 sg:pub.10.1007/s00382-016-3158-8
7 sg:pub.10.1007/s00704-015-1527-6
8 sg:pub.10.1038/nclimate2927
9 sg:pub.10.1038/nclimate2976
10 sg:pub.10.1038/srep25721
11 https://app.dimensions.ai/details/publication/pub.1109705929
12 https://doi.org/10.1002/2016gl072281
13 https://doi.org/10.1002/2017gl072908
14 https://doi.org/10.1002/2017gl073531
15 https://doi.org/10.1002/joc.4771
16 https://doi.org/10.1002/qj.828
17 https://doi.org/10.1016/j.atmosres.2017.05.013
18 https://doi.org/10.1016/j.rse.2010.10.017
19 https://doi.org/10.1016/s0921-8181(03)00026-2
20 https://doi.org/10.1029/2000jd000089
21 https://doi.org/10.1088/1748-9326/11/6/064006
22 https://doi.org/10.1088/1748-9326/11/7/074006
23 https://doi.org/10.1088/1748-9326/aa5ba3
24 https://doi.org/10.1088/1748-9326/aa69d2
25 https://doi.org/10.1126/science.1132588
26 https://doi.org/10.1146/annurev-environ-102016-060847
27 https://doi.org/10.1175/bams-d-15-00115.1
28 https://doi.org/10.1175/bams-d-16-0124.1
29 https://doi.org/10.1175/bams-d-16-0158.1
30 https://doi.org/10.1175/bams-d-17-0095.1
31 https://doi.org/10.1175/jcli-d-12-00277.1
32 https://doi.org/10.1175/jcli-d-14-00808.1
33 https://doi.org/10.1175/jcli-d-15-0478.1
34 https://doi.org/10.1175/jcli-d-16-0269.1
35 https://doi.org/10.1175/jcli-d-16-0287.1
36 https://doi.org/10.5194/acp-16-9785-2016
37 https://doi.org/10.5194/gmd-10-1849-2017
38 https://doi.org/10.5194/gmd-9-3161-2016
39 schema:datePublished 2018-08
40 schema:datePublishedReg 2018-08-01
41 schema:description This study investigates the potential influences of anthropogenic forcings and natural variability on the risk of summer extreme temperatures over China. We use three multi-thousand-member ensemble simulations with different forcings (with or without anthropogenic greenhouse gases and aerosol emissions) to evaluate the human impact, and with sea surface temperature patterns from three different years around the El Niño–Southern Oscillation (ENSO) 2015/16 event (years 2014, 2015 and 2016) to evaluate the impact of natural variability. A generalized extreme value (GEV) distribution is used to fit the ensemble results. Based on these model results, we find that, during the peak of ENSO (2015), daytime extreme temperatures are smaller over the central China region compared to a normal year (2014). During 2016, the risk of nighttime extreme temperatures is largely increased over the eastern coastal region. Both anomalies are of the same magnitude as the anthropogenic influence. Thus, ENSO can amplify or counterbalance (at a regional and annual scale) anthropogenic effects on extreme summer temperatures over China. Changes are mainly due to changes in the GEV location parameter. Thus, anomalies are due to a shift in the distributions and not to a change in temperature variability.
42 schema:genre research_article
43 schema:inLanguage en
44 schema:isAccessibleForFree true
45 schema:isPartOf N8f1c6f1ce2d4423c9e07ff2e1901e302
46 Nf4b66e5717e743d89a6cdd9cb484e8d8
47 sg:journal.1135901
48 schema:name Impacts of Anthropogenic Forcings and El Niño on Chinese Extreme Temperatures
49 schema:pagination 994-1002
50 schema:productId N2e6d8800825a40889576088380c8c3f3
51 Nc20fbecd1bd949d9965b250d0e6a829c
52 Nd8ab035be98545c3a306d8e55b3c3f2a
53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104431795
54 https://doi.org/10.1007/s00376-018-7258-8
55 schema:sdDatePublished 2019-04-11T00:31
56 schema:sdLicense https://scigraph.springernature.com/explorer/license/
57 schema:sdPublisher N4dbd696980be40d4ba078afc00c1a3da
58 schema:url https://link.springer.com/10.1007%2Fs00376-018-7258-8
59 sgo:license sg:explorer/license/
60 sgo:sdDataset articles
61 rdf:type schema:ScholarlyArticle
62 N2e6d8800825a40889576088380c8c3f3 schema:name dimensions_id
63 schema:value pub.1104431795
64 rdf:type schema:PropertyValue
65 N302c6a965c414ab0a97504b3813640ac schema:affiliation https://www.grid.ac/institutes/grid.4305.2
66 schema:familyName Hegerl
67 schema:givenName G. C.
68 rdf:type schema:Person
69 N3258c20a03714cc684086e2b3a60d676 rdf:first sg:person.015131374022.11
70 rdf:rest rdf:nil
71 N4dbd696980be40d4ba078afc00c1a3da schema:name Springer Nature - SN SciGraph project
72 rdf:type schema:Organization
73 N8d1c8344828e45569aa671b01da251ec rdf:first sg:person.016344130753.83
74 rdf:rest Nc903fdef7ad54c2c8fff7095b6bb1461
75 N8f1c6f1ce2d4423c9e07ff2e1901e302 schema:volumeNumber 35
76 rdf:type schema:PublicationVolume
77 Nb4a23e6f6d4f40158b0e3066d48667cb rdf:first N302c6a965c414ab0a97504b3813640ac
78 rdf:rest N3258c20a03714cc684086e2b3a60d676
79 Nb6be207fd6bf4022a5bd43bdfdfdaac0 rdf:first sg:person.011357255273.05
80 rdf:rest Nb4a23e6f6d4f40158b0e3066d48667cb
81 Nc20fbecd1bd949d9965b250d0e6a829c schema:name doi
82 schema:value 10.1007/s00376-018-7258-8
83 rdf:type schema:PropertyValue
84 Nc903fdef7ad54c2c8fff7095b6bb1461 rdf:first sg:person.013147101037.33
85 rdf:rest Nd5c2e8ef689943a584430e8770ce19eb
86 Nd5c2e8ef689943a584430e8770ce19eb rdf:first sg:person.01025613710.20
87 rdf:rest Nb6be207fd6bf4022a5bd43bdfdfdaac0
88 Nd8ab035be98545c3a306d8e55b3c3f2a schema:name readcube_id
89 schema:value b1d9cec0db12242f8229dd9c576fcaa1079b3983c3d6ec2acab9c0cf5267ade0
90 rdf:type schema:PropertyValue
91 Nf4b66e5717e743d89a6cdd9cb484e8d8 schema:issueNumber 8
92 rdf:type schema:PublicationIssue
93 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
94 schema:name Earth Sciences
95 rdf:type schema:DefinedTerm
96 anzsrc-for:0406 schema:inDefinedTermSet anzsrc-for:
97 schema:name Physical Geography and Environmental Geoscience
98 rdf:type schema:DefinedTerm
99 sg:journal.1135901 schema:issn 0256-1530
100 1861-9533
101 schema:name Advances in Atmospheric Sciences
102 rdf:type schema:Periodical
103 sg:person.01025613710.20 schema:affiliation https://www.grid.ac/institutes/grid.4305.2
104 schema:familyName Tett
105 schema:givenName S. F. B.
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01025613710.20
107 rdf:type schema:Person
108 sg:person.011357255273.05 schema:affiliation https://www.grid.ac/institutes/grid.4305.2
109 schema:familyName Mineter
110 schema:givenName M. J.
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011357255273.05
112 rdf:type schema:Person
113 sg:person.013147101037.33 schema:affiliation https://www.grid.ac/institutes/grid.4991.5
114 schema:familyName Sparrow
115 schema:givenName S.
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013147101037.33
117 rdf:type schema:Person
118 sg:person.015131374022.11 schema:affiliation https://www.grid.ac/institutes/grid.4991.5
119 schema:familyName Wallom
120 schema:givenName D. C. H.
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015131374022.11
122 rdf:type schema:Person
123 sg:person.016344130753.83 schema:affiliation https://www.grid.ac/institutes/grid.4305.2
124 schema:familyName Freychet
125 schema:givenName N.
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016344130753.83
127 rdf:type schema:Person
128 sg:pub.10.1007/978-1-4899-4541-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109705929
129 https://doi.org/10.1007/978-1-4899-4541-9
130 rdf:type schema:CreativeWork
131 sg:pub.10.1007/s00382-015-2726-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042848069
132 https://doi.org/10.1007/s00382-015-2726-7
133 rdf:type schema:CreativeWork
134 sg:pub.10.1007/s00382-016-3158-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053055973
135 https://doi.org/10.1007/s00382-016-3158-8
136 rdf:type schema:CreativeWork
137 sg:pub.10.1007/s00704-015-1527-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051288836
138 https://doi.org/10.1007/s00704-015-1527-6
139 rdf:type schema:CreativeWork
140 sg:pub.10.1038/nclimate2927 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011320779
141 https://doi.org/10.1038/nclimate2927
142 rdf:type schema:CreativeWork
143 sg:pub.10.1038/nclimate2976 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028450520
144 https://doi.org/10.1038/nclimate2976
145 rdf:type schema:CreativeWork
146 sg:pub.10.1038/srep25721 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012308815
147 https://doi.org/10.1038/srep25721
148 rdf:type schema:CreativeWork
149 https://app.dimensions.ai/details/publication/pub.1109705929 schema:CreativeWork
150 https://doi.org/10.1002/2016gl072281 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085211062
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1002/2017gl072908 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084514801
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1002/2017gl073531 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085123381
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1002/joc.4771 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036411518
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1002/qj.828 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039601605
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1016/j.atmosres.2017.05.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085459361
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1016/j.rse.2010.10.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003124536
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1016/s0921-8181(03)00026-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019860333
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1029/2000jd000089 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027009688
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1088/1748-9326/11/6/064006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051168910
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1088/1748-9326/11/7/074006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041122918
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1088/1748-9326/aa5ba3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083764386
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1088/1748-9326/aa69d2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084174904
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1126/science.1132588 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015053580
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1146/annurev-environ-102016-060847 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090905955
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1175/bams-d-15-00115.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029316956
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1175/bams-d-16-0124.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023524002
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1175/bams-d-16-0158.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034861240
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1175/bams-d-17-0095.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101766632
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1175/jcli-d-12-00277.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052147938
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1175/jcli-d-14-00808.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043230695
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1175/jcli-d-15-0478.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004010552
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1175/jcli-d-16-0269.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020853513
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1175/jcli-d-16-0287.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020272047
197 rdf:type schema:CreativeWork
198 https://doi.org/10.5194/acp-16-9785-2016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001013830
199 rdf:type schema:CreativeWork
200 https://doi.org/10.5194/gmd-10-1849-2017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085180550
201 rdf:type schema:CreativeWork
202 https://doi.org/10.5194/gmd-9-3161-2016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000832415
203 rdf:type schema:CreativeWork
204 https://www.grid.ac/institutes/grid.4305.2 schema:alternateName University of Edinburgh
205 schema:name School of Geosciences, University of Edinburgh, Crew Building, The King’s Buildings, EH9 3FF, Edinburgh, UK
206 rdf:type schema:Organization
207 https://www.grid.ac/institutes/grid.4991.5 schema:alternateName University of Oxford
208 schema:name Oxford e-Research Centre, University of Oxford, OX1 2JD, Oxford, UK
209 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...