Impacts of Anthropogenic Forcings and El Niño on Chinese Extreme Temperatures View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-08-14

AUTHORS

N. Freychet, S. Sparrow, S. F. B. Tett, M. J. Mineter, G. C. Hegerl, D. C. H. Wallom

ABSTRACT

This study investigates the potential influences of anthropogenic forcings and natural variability on the risk of summer extreme temperatures over China. We use three multi-thousand-member ensemble simulations with different forcings (with or without anthropogenic greenhouse gases and aerosol emissions) to evaluate the human impact, and with sea surface temperature patterns from three different years around the El Niño–Southern Oscillation (ENSO) 2015/16 event (years 2014, 2015 and 2016) to evaluate the impact of natural variability. A generalized extreme value (GEV) distribution is used to fit the ensemble results. Based on these model results, we find that, during the peak of ENSO (2015), daytime extreme temperatures are smaller over the central China region compared to a normal year (2014). During 2016, the risk of nighttime extreme temperatures is largely increased over the eastern coastal region. Both anomalies are of the same magnitude as the anthropogenic influence. Thus, ENSO can amplify or counterbalance (at a regional and annual scale) anthropogenic effects on extreme summer temperatures over China. Changes are mainly due to changes in the GEV location parameter. Thus, anomalies are due to a shift in the distributions and not to a change in temperature variability. More... »

PAGES

994-1002

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00376-018-7258-8

DOI

http://dx.doi.org/10.1007/s00376-018-7258-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1104431795


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0401", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atmospheric Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "School of Geosciences, University of Edinburgh, Crew Building, The King\u2019s Buildings, EH9 3FF, Edinburgh, UK", 
          "id": "http://www.grid.ac/institutes/grid.4305.2", 
          "name": [
            "School of Geosciences, University of Edinburgh, Crew Building, The King\u2019s Buildings, EH9 3FF, Edinburgh, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Freychet", 
        "givenName": "N.", 
        "id": "sg:person.016344130753.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016344130753.83"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Oxford e-Research Centre, University of Oxford, OX1 2JD, Oxford, UK", 
          "id": "http://www.grid.ac/institutes/grid.4991.5", 
          "name": [
            "Oxford e-Research Centre, University of Oxford, OX1 2JD, Oxford, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sparrow", 
        "givenName": "S.", 
        "id": "sg:person.013147101037.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013147101037.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Geosciences, University of Edinburgh, Crew Building, The King\u2019s Buildings, EH9 3FF, Edinburgh, UK", 
          "id": "http://www.grid.ac/institutes/grid.4305.2", 
          "name": [
            "School of Geosciences, University of Edinburgh, Crew Building, The King\u2019s Buildings, EH9 3FF, Edinburgh, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tett", 
        "givenName": "S. F. B.", 
        "id": "sg:person.01025613710.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01025613710.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Geosciences, University of Edinburgh, Crew Building, The King\u2019s Buildings, EH9 3FF, Edinburgh, UK", 
          "id": "http://www.grid.ac/institutes/grid.4305.2", 
          "name": [
            "School of Geosciences, University of Edinburgh, Crew Building, The King\u2019s Buildings, EH9 3FF, Edinburgh, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mineter", 
        "givenName": "M. J.", 
        "id": "sg:person.011357255273.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011357255273.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Geosciences, University of Edinburgh, Crew Building, The King\u2019s Buildings, EH9 3FF, Edinburgh, UK", 
          "id": "http://www.grid.ac/institutes/grid.4305.2", 
          "name": [
            "School of Geosciences, University of Edinburgh, Crew Building, The King\u2019s Buildings, EH9 3FF, Edinburgh, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hegerl", 
        "givenName": "G. C.", 
        "id": "sg:person.0624607120.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0624607120.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Oxford e-Research Centre, University of Oxford, OX1 2JD, Oxford, UK", 
          "id": "http://www.grid.ac/institutes/grid.4991.5", 
          "name": [
            "Oxford e-Research Centre, University of Oxford, OX1 2JD, Oxford, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wallom", 
        "givenName": "D. C. H.", 
        "id": "sg:person.015131374022.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015131374022.11"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-1-4899-4541-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109705929", 
          "https://doi.org/10.1007/978-1-4899-4541-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00704-015-1527-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051288836", 
          "https://doi.org/10.1007/s00704-015-1527-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nclimate2927", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011320779", 
          "https://doi.org/10.1038/nclimate2927"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep25721", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012308815", 
          "https://doi.org/10.1038/srep25721"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-015-2726-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042848069", 
          "https://doi.org/10.1007/s00382-015-2726-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nclimate2976", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028450520", 
          "https://doi.org/10.1038/nclimate2976"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-016-3158-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053055973", 
          "https://doi.org/10.1007/s00382-016-3158-8"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-08-14", 
    "datePublishedReg": "2018-08-14", 
    "description": "This study investigates the potential influences of anthropogenic forcings and natural variability on the risk of summer extreme temperatures over China. We use three multi-thousand-member ensemble simulations with different forcings (with or without anthropogenic greenhouse gases and aerosol emissions) to evaluate the human impact, and with sea surface temperature patterns from three different years around the El Ni\u00f1o\u2013Southern Oscillation (ENSO) 2015/16 event (years 2014, 2015 and 2016) to evaluate the impact of natural variability. A generalized extreme value (GEV) distribution is used to fit the ensemble results. Based on these model results, we find that, during the peak of ENSO (2015), daytime extreme temperatures are smaller over the central China region compared to a normal year (2014). During 2016, the risk of nighttime extreme temperatures is largely increased over the eastern coastal region. Both anomalies are of the same magnitude as the anthropogenic influence. Thus, ENSO can amplify or counterbalance (at a regional and annual scale) anthropogenic effects on extreme summer temperatures over China. Changes are mainly due to changes in the GEV location parameter. Thus, anomalies are due to a shift in the distributions and not to a change in temperature variability.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00376-018-7258-8", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1135901", 
        "issn": [
          "0256-1530", 
          "1861-9533"
        ], 
        "name": "Advances in Atmospheric Sciences", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "8", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "35"
      }
    ], 
    "keywords": [
      "anthropogenic forcing", 
      "natural variability", 
      "extreme temperatures", 
      "sea surface temperature patterns", 
      "peak of ENSO", 
      "surface temperature patterns", 
      "GEV location parameter", 
      "generalized extreme value distribution", 
      "summer extreme temperatures", 
      "extreme summer temperatures", 
      "Central China region", 
      "eastern coastal region", 
      "El Ni\u00f1o", 
      "different forcings", 
      "temperature variability", 
      "ensemble simulations", 
      "anthropogenic influences", 
      "coastal regions", 
      "ensemble results", 
      "anthropogenic effects", 
      "normal years", 
      "summer temperatures", 
      "extreme value distribution", 
      "human impact", 
      "temperature patterns", 
      "model results", 
      "China region", 
      "forcing", 
      "ENSO", 
      "variability", 
      "anomalies", 
      "different years", 
      "value distribution", 
      "same magnitude", 
      "Ni\u00f1o", 
      "China", 
      "potential influence", 
      "region", 
      "temperature", 
      "distribution", 
      "changes", 
      "impact", 
      "events", 
      "magnitude", 
      "location parameter", 
      "influence", 
      "years", 
      "patterns", 
      "peak", 
      "shift", 
      "simulations", 
      "results", 
      "parameters", 
      "study", 
      "effect", 
      "risk"
    ], 
    "name": "Impacts of Anthropogenic Forcings and El Ni\u00f1o on Chinese Extreme Temperatures", 
    "pagination": "994-1002", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1104431795"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00376-018-7258-8"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00376-018-7258-8", 
      "https://app.dimensions.ai/details/publication/pub.1104431795"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-08-04T17:04", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_756.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00376-018-7258-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00376-018-7258-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00376-018-7258-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00376-018-7258-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00376-018-7258-8'


 

This table displays all metadata directly associated to this object as RDF triples.

179 TRIPLES      21 PREDICATES      87 URIs      72 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00376-018-7258-8 schema:about anzsrc-for:04
2 anzsrc-for:0401
3 schema:author N98b47ec3fdbf48e1975eccc90d094eb5
4 schema:citation sg:pub.10.1007/978-1-4899-4541-9
5 sg:pub.10.1007/s00382-015-2726-7
6 sg:pub.10.1007/s00382-016-3158-8
7 sg:pub.10.1007/s00704-015-1527-6
8 sg:pub.10.1038/nclimate2927
9 sg:pub.10.1038/nclimate2976
10 sg:pub.10.1038/srep25721
11 schema:datePublished 2018-08-14
12 schema:datePublishedReg 2018-08-14
13 schema:description This study investigates the potential influences of anthropogenic forcings and natural variability on the risk of summer extreme temperatures over China. We use three multi-thousand-member ensemble simulations with different forcings (with or without anthropogenic greenhouse gases and aerosol emissions) to evaluate the human impact, and with sea surface temperature patterns from three different years around the El Niño–Southern Oscillation (ENSO) 2015/16 event (years 2014, 2015 and 2016) to evaluate the impact of natural variability. A generalized extreme value (GEV) distribution is used to fit the ensemble results. Based on these model results, we find that, during the peak of ENSO (2015), daytime extreme temperatures are smaller over the central China region compared to a normal year (2014). During 2016, the risk of nighttime extreme temperatures is largely increased over the eastern coastal region. Both anomalies are of the same magnitude as the anthropogenic influence. Thus, ENSO can amplify or counterbalance (at a regional and annual scale) anthropogenic effects on extreme summer temperatures over China. Changes are mainly due to changes in the GEV location parameter. Thus, anomalies are due to a shift in the distributions and not to a change in temperature variability.
14 schema:genre article
15 schema:isAccessibleForFree true
16 schema:isPartOf N8ac704906c5844b7a0b0ee295279b138
17 Ne765ed73adac4032b305c5daafe7499d
18 sg:journal.1135901
19 schema:keywords Central China region
20 China
21 China region
22 ENSO
23 El Niño
24 GEV location parameter
25 Niño
26 anomalies
27 anthropogenic effects
28 anthropogenic forcing
29 anthropogenic influences
30 changes
31 coastal regions
32 different forcings
33 different years
34 distribution
35 eastern coastal region
36 effect
37 ensemble results
38 ensemble simulations
39 events
40 extreme summer temperatures
41 extreme temperatures
42 extreme value distribution
43 forcing
44 generalized extreme value distribution
45 human impact
46 impact
47 influence
48 location parameter
49 magnitude
50 model results
51 natural variability
52 normal years
53 parameters
54 patterns
55 peak
56 peak of ENSO
57 potential influence
58 region
59 results
60 risk
61 same magnitude
62 sea surface temperature patterns
63 shift
64 simulations
65 study
66 summer extreme temperatures
67 summer temperatures
68 surface temperature patterns
69 temperature
70 temperature patterns
71 temperature variability
72 value distribution
73 variability
74 years
75 schema:name Impacts of Anthropogenic Forcings and El Niño on Chinese Extreme Temperatures
76 schema:pagination 994-1002
77 schema:productId Na9e8798d587340dc89788cd2b30d64aa
78 Nde23694dd1eb4da4b10cbf1668daa96f
79 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104431795
80 https://doi.org/10.1007/s00376-018-7258-8
81 schema:sdDatePublished 2022-08-04T17:04
82 schema:sdLicense https://scigraph.springernature.com/explorer/license/
83 schema:sdPublisher Ne9b3cef53bdb458e86e2495f05c63717
84 schema:url https://doi.org/10.1007/s00376-018-7258-8
85 sgo:license sg:explorer/license/
86 sgo:sdDataset articles
87 rdf:type schema:ScholarlyArticle
88 N2fead89dc62e4b4fa91c745c16f5c801 rdf:first sg:person.013147101037.33
89 rdf:rest Nf713d7604f7e4d95afd7be44fc565c7c
90 N5905185290f84cdb86fc8b803e74f6e0 rdf:first sg:person.015131374022.11
91 rdf:rest rdf:nil
92 N8ac704906c5844b7a0b0ee295279b138 schema:issueNumber 8
93 rdf:type schema:PublicationIssue
94 N98b47ec3fdbf48e1975eccc90d094eb5 rdf:first sg:person.016344130753.83
95 rdf:rest N2fead89dc62e4b4fa91c745c16f5c801
96 Na9e8798d587340dc89788cd2b30d64aa schema:name doi
97 schema:value 10.1007/s00376-018-7258-8
98 rdf:type schema:PropertyValue
99 Nc0cb5d56c50344c69fd8e5d60e38da04 rdf:first sg:person.0624607120.80
100 rdf:rest N5905185290f84cdb86fc8b803e74f6e0
101 Nde23694dd1eb4da4b10cbf1668daa96f schema:name dimensions_id
102 schema:value pub.1104431795
103 rdf:type schema:PropertyValue
104 Ne765ed73adac4032b305c5daafe7499d schema:volumeNumber 35
105 rdf:type schema:PublicationVolume
106 Ne907bc06947b40b4bc73b39a0f81820d rdf:first sg:person.011357255273.05
107 rdf:rest Nc0cb5d56c50344c69fd8e5d60e38da04
108 Ne9b3cef53bdb458e86e2495f05c63717 schema:name Springer Nature - SN SciGraph project
109 rdf:type schema:Organization
110 Nf713d7604f7e4d95afd7be44fc565c7c rdf:first sg:person.01025613710.20
111 rdf:rest Ne907bc06947b40b4bc73b39a0f81820d
112 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
113 schema:name Earth Sciences
114 rdf:type schema:DefinedTerm
115 anzsrc-for:0401 schema:inDefinedTermSet anzsrc-for:
116 schema:name Atmospheric Sciences
117 rdf:type schema:DefinedTerm
118 sg:journal.1135901 schema:issn 0256-1530
119 1861-9533
120 schema:name Advances in Atmospheric Sciences
121 schema:publisher Springer Nature
122 rdf:type schema:Periodical
123 sg:person.01025613710.20 schema:affiliation grid-institutes:grid.4305.2
124 schema:familyName Tett
125 schema:givenName S. F. B.
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01025613710.20
127 rdf:type schema:Person
128 sg:person.011357255273.05 schema:affiliation grid-institutes:grid.4305.2
129 schema:familyName Mineter
130 schema:givenName M. J.
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011357255273.05
132 rdf:type schema:Person
133 sg:person.013147101037.33 schema:affiliation grid-institutes:grid.4991.5
134 schema:familyName Sparrow
135 schema:givenName S.
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013147101037.33
137 rdf:type schema:Person
138 sg:person.015131374022.11 schema:affiliation grid-institutes:grid.4991.5
139 schema:familyName Wallom
140 schema:givenName D. C. H.
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015131374022.11
142 rdf:type schema:Person
143 sg:person.016344130753.83 schema:affiliation grid-institutes:grid.4305.2
144 schema:familyName Freychet
145 schema:givenName N.
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016344130753.83
147 rdf:type schema:Person
148 sg:person.0624607120.80 schema:affiliation grid-institutes:grid.4305.2
149 schema:familyName Hegerl
150 schema:givenName G. C.
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0624607120.80
152 rdf:type schema:Person
153 sg:pub.10.1007/978-1-4899-4541-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109705929
154 https://doi.org/10.1007/978-1-4899-4541-9
155 rdf:type schema:CreativeWork
156 sg:pub.10.1007/s00382-015-2726-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042848069
157 https://doi.org/10.1007/s00382-015-2726-7
158 rdf:type schema:CreativeWork
159 sg:pub.10.1007/s00382-016-3158-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053055973
160 https://doi.org/10.1007/s00382-016-3158-8
161 rdf:type schema:CreativeWork
162 sg:pub.10.1007/s00704-015-1527-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051288836
163 https://doi.org/10.1007/s00704-015-1527-6
164 rdf:type schema:CreativeWork
165 sg:pub.10.1038/nclimate2927 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011320779
166 https://doi.org/10.1038/nclimate2927
167 rdf:type schema:CreativeWork
168 sg:pub.10.1038/nclimate2976 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028450520
169 https://doi.org/10.1038/nclimate2976
170 rdf:type schema:CreativeWork
171 sg:pub.10.1038/srep25721 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012308815
172 https://doi.org/10.1038/srep25721
173 rdf:type schema:CreativeWork
174 grid-institutes:grid.4305.2 schema:alternateName School of Geosciences, University of Edinburgh, Crew Building, The King’s Buildings, EH9 3FF, Edinburgh, UK
175 schema:name School of Geosciences, University of Edinburgh, Crew Building, The King’s Buildings, EH9 3FF, Edinburgh, UK
176 rdf:type schema:Organization
177 grid-institutes:grid.4991.5 schema:alternateName Oxford e-Research Centre, University of Oxford, OX1 2JD, Oxford, UK
178 schema:name Oxford e-Research Centre, University of Oxford, OX1 2JD, Oxford, UK
179 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...