Validation and Spatiotemporal Distribution of GEOS-5–Based Planetary Boundary Layer Height and Relative Humidity in China View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-04

AUTHORS

Yidan Si, Shenshen Li, Liangfu Chen, Chao Yu, Zifeng Wang, Yang Wang, Hongmei Wang

ABSTRACT

Few studies have specifically focused on the validation and spatiotemporal distribution of planetary boundary layer height (PBLH) and relative humidity (RH) data in China. In this analysis, continuous PBLH and surface-level RH data simulated from GEOS-5 between 2004 and 2012, were validated against ground-based observations. Overall, the simulated RH was consistent with the statistical data from meteorological stations, with a correlation coefficient of 0.78 and a slope of 0.9. However, the simulated PBLH was underestimated compared to LIDAR data by a factor of approximately two, which was primarily because of poor simulation in late summer and early autumn. We further examined the spatiotemporal distribution characteristics of two factors in four regions—North China, South China, Northwest China, and the Tibetan Plateau. The results showed that the annual PBLH trends in all regions were fairly moderate but sensitive to solar radiation and precipitation, which explains why the PBLH values were ranked in order from largest to smallest as follows: Tibetan Plateau, Northwest China, North China, and South China. Strong seasonal variation of the PBLH exhibited high values in summer and low values in winter, which was also consistent with the turbulent vertical exchange. Not surprisingly, the highest RH in South China and the lowest RH in desert areas of Northwest China (less than 30%). Seasonally, South China exhibited little variation, whereas Northwest China exhibited its highest humidity in winter and lowest humidity in spring, the maximum values in the other regions were obtained from July to September. More... »

PAGES

479-492

References to SciGraph publications

  • 2016-07. Rapid formation and evolution of an extreme haze episode in Northern China during winter 2015 in SCIENTIFIC REPORTS
  • 2000-10. Spatial And Temporal Variability Of Mixed-Layer Depth And Entrainment Zone Thickness in BOUNDARY-LAYER METEOROLOGY
  • 2014-11. Diurnal variations of the planetary boundary layer height estimated from intensive radiosonde observations over Yichang, China in SCIENCE CHINA TECHNOLOGICAL SCIENCES
  • 2011-04. Recent changes in the summer precipitation pattern in East China and the background circulation in CLIMATE DYNAMICS
  • 2016-02. Modeling the feedback between aerosol and boundary layer processes: a case study in Beijing, China in ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH
  • 2006-07. Determination of the Atmospheric Boundary Layer Height from Radiosonde and Lidar Backscatter in BOUNDARY-LAYER METEOROLOGY
  • 2009-06. A Comparison Between Modelled and Measured Mixing-Layer Height Over Munich in BOUNDARY-LAYER METEOROLOGY
  • 2012-10. A study of surface humidity changes in china during the recent 50 years in ACTA METEOROLOGICA SINICA
  • 2011-07. Characteristics and Numerical Simulations of Extremely Large Atmospheric Boundary-layer Heights over an Arid Region in North-west China in BOUNDARY-LAYER METEOROLOGY
  • 2013-08. A method to estimate concentrations of surface-level particulate matter using satellite-based aerosol optical thickness in SCIENCE CHINA EARTH SCIENCES
  • 2005-01. Diurnal variations of air pollution and atmospheric boundary layer structure in Beijing during winter 2000/2001 in ADVANCES IN ATMOSPHERIC SCIENCES
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00376-017-6275-3

    DOI

    http://dx.doi.org/10.1007/s00376-017-6275-3

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1101076712


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Interdisciplinary Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Chinese Academy of Sciences", 
              "id": "https://www.grid.ac/institutes/grid.410726.6", 
              "name": [
                "State Key Laboratory of Remote Sensing Sciences, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, 100101, Beijing, China", 
                "University of Chinese Academy of Sciences, 100049, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Si", 
            "givenName": "Yidan", 
            "id": "sg:person.012573766172.18", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012573766172.18"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Remote Sensing and Digital Earth", 
              "id": "https://www.grid.ac/institutes/grid.458443.a", 
              "name": [
                "State Key Laboratory of Remote Sensing Sciences, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, 100101, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Li", 
            "givenName": "Shenshen", 
            "id": "sg:person.010255216467.10", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010255216467.10"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Remote Sensing and Digital Earth", 
              "id": "https://www.grid.ac/institutes/grid.458443.a", 
              "name": [
                "State Key Laboratory of Remote Sensing Sciences, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, 100101, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chen", 
            "givenName": "Liangfu", 
            "id": "sg:person.016513234112.70", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016513234112.70"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Remote Sensing and Digital Earth", 
              "id": "https://www.grid.ac/institutes/grid.458443.a", 
              "name": [
                "State Key Laboratory of Remote Sensing Sciences, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, 100101, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yu", 
            "givenName": "Chao", 
            "id": "sg:person.0747524203.10", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0747524203.10"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Remote Sensing and Digital Earth", 
              "id": "https://www.grid.ac/institutes/grid.458443.a", 
              "name": [
                "State Key Laboratory of Remote Sensing Sciences, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, 100101, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wang", 
            "givenName": "Zifeng", 
            "id": "sg:person.014407044335.43", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014407044335.43"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Chinese Academy of Sciences", 
              "id": "https://www.grid.ac/institutes/grid.410726.6", 
              "name": [
                "State Key Laboratory of Remote Sensing Sciences, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, 100101, Beijing, China", 
                "University of Chinese Academy of Sciences, 100049, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wang", 
            "givenName": "Yang", 
            "id": "sg:person.012754770354.37", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012754770354.37"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Chinese Academy of Sciences", 
              "id": "https://www.grid.ac/institutes/grid.410726.6", 
              "name": [
                "State Key Laboratory of Remote Sensing Sciences, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, 100101, Beijing, China", 
                "University of Chinese Academy of Sciences, 100049, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wang", 
            "givenName": "Hongmei", 
            "id": "sg:person.011214700150.57", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011214700150.57"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/srep27151", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000618690", 
              "https://doi.org/10.1038/srep27151"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.atmosenv.2009.08.026", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002537898"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1002790424133", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002578408", 
              "https://doi.org/10.1023/a:1002790424133"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.atmosenv.2006.04.044", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005827008"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.partic.2012.04.005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007907550"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.atmosenv.2016.06.075", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008794056"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.5194/acp-13-4501-2013", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011850342"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s13351-012-0501-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012756761", 
              "https://doi.org/10.1007/s13351-012-0501-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1029/2004jd005025", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012900431"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.rse.2009.08.009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013080137"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1175/1520-0493(2000)128<3187:anblms>2.0.co;2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013199495"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1175/1520-0450(1972)011<0482:doahdb>2.0.co;2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013520070"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.5194/amt-7-173-2014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013979148"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10546-009-9373-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015029198", 
              "https://doi.org/10.1007/s10546-009-9373-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10546-009-9373-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015029198", 
              "https://doi.org/10.1007/s10546-009-9373-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10546-009-9373-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015029198", 
              "https://doi.org/10.1007/s10546-009-9373-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.quaint.2014.11.062", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015930305"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.5194/acp-16-9951-2016", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016655263"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.atmosenv.2003.09.054", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019489174"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.atmosenv.2003.09.054", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019489174"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jqsrt.2014.10.011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021162570"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1029/2012jd018143", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021709509"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s1352-2310(99)00349-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021952232"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1289/ehp.1409481", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021977831"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.5194/amt-8-1157-2015", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024306912"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11430-012-4503-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027180341", 
              "https://doi.org/10.1007/s11430-012-4503-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02930876", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028622782", 
              "https://doi.org/10.1007/bf02930876"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02930876", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028622782", 
              "https://doi.org/10.1007/bf02930876"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.5194/acp-16-13309-2016", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031536888"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1029/2010gl045081", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032069936"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.saa.2011.08.021", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034157993"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s1352-2310(96)00300-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037337546"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1175/2010jamc2432.1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039448900"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1029/2003gl018174", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040540408"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11356-015-5562-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041470561", 
              "https://doi.org/10.1007/s11356-015-5562-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.5194/amt-8-1789-2015", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042086194"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/2015ms000522", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042328842"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.5194/acp-15-4279-2015", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042978810"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.aaf7271", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046914980"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10546-005-9035-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046920612", 
              "https://doi.org/10.1007/s10546-005-9035-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10546-005-9035-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046920612", 
              "https://doi.org/10.1007/s10546-005-9035-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.atmosenv.2010.05.056", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047371443"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1175/jcli3417.1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047628578"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1175/jcli3417.1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047628578"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10546-011-9608-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048900112", 
              "https://doi.org/10.1007/s10546-011-9608-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-010-0852-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050524594", 
              "https://doi.org/10.1007/s00382-010-0852-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11431-014-5639-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052752959", 
              "https://doi.org/10.1007/s11431-014-5639-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.atmosenv.2006.03.016", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053199757"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/es5009399", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055507774"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tgrs.2012.2214038", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061612539"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1364/ao.38.000945", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1065114036"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3788/col20090709.0753", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1071399033"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.5194/acp-14-6717-2014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1072651721"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.5194/acp-16-4927-2016", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1072652816"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.5194/acp-16-6913-2016", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1072652996"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1077967870", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/iembs.2010.5628061", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1078306311"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/2016jd025620", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084761040"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-04", 
        "datePublishedReg": "2018-04-01", 
        "description": "Few studies have specifically focused on the validation and spatiotemporal distribution of planetary boundary layer height (PBLH) and relative humidity (RH) data in China. In this analysis, continuous PBLH and surface-level RH data simulated from GEOS-5 between 2004 and 2012, were validated against ground-based observations. Overall, the simulated RH was consistent with the statistical data from meteorological stations, with a correlation coefficient of 0.78 and a slope of 0.9. However, the simulated PBLH was underestimated compared to LIDAR data by a factor of approximately two, which was primarily because of poor simulation in late summer and early autumn. We further examined the spatiotemporal distribution characteristics of two factors in four regions\u2014North China, South China, Northwest China, and the Tibetan Plateau. The results showed that the annual PBLH trends in all regions were fairly moderate but sensitive to solar radiation and precipitation, which explains why the PBLH values were ranked in order from largest to smallest as follows: Tibetan Plateau, Northwest China, North China, and South China. Strong seasonal variation of the PBLH exhibited high values in summer and low values in winter, which was also consistent with the turbulent vertical exchange. Not surprisingly, the highest RH in South China and the lowest RH in desert areas of Northwest China (less than 30%). Seasonally, South China exhibited little variation, whereas Northwest China exhibited its highest humidity in winter and lowest humidity in spring, the maximum values in the other regions were obtained from July to September.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s00376-017-6275-3", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1135901", 
            "issn": [
              "0256-1530", 
              "1861-9533"
            ], 
            "name": "Advances in Atmospheric Sciences", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "35"
          }
        ], 
        "name": "Validation and Spatiotemporal Distribution of GEOS-5\u2013Based Planetary Boundary Layer Height and Relative Humidity in China", 
        "pagination": "479-492", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "59f0da196833722de54dc51579de7035257bd34d9c08a3a689597b426a2f75b3"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00376-017-6275-3"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1101076712"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00376-017-6275-3", 
          "https://app.dimensions.ai/details/publication/pub.1101076712"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T14:02", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8660_00000484.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007/s00376-017-6275-3"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00376-017-6275-3'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00376-017-6275-3'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00376-017-6275-3'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00376-017-6275-3'


     

    This table displays all metadata directly associated to this object as RDF triples.

    273 TRIPLES      21 PREDICATES      79 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00376-017-6275-3 schema:about anzsrc-for:09
    2 anzsrc-for:0915
    3 schema:author Ne2053890a3f244a3996f69088473c336
    4 schema:citation sg:pub.10.1007/bf02930876
    5 sg:pub.10.1007/s00382-010-0852-9
    6 sg:pub.10.1007/s10546-005-9035-3
    7 sg:pub.10.1007/s10546-009-9373-7
    8 sg:pub.10.1007/s10546-011-9608-2
    9 sg:pub.10.1007/s11356-015-5562-8
    10 sg:pub.10.1007/s11430-012-4503-3
    11 sg:pub.10.1007/s11431-014-5639-5
    12 sg:pub.10.1007/s13351-012-0501-9
    13 sg:pub.10.1023/a:1002790424133
    14 sg:pub.10.1038/srep27151
    15 https://app.dimensions.ai/details/publication/pub.1077967870
    16 https://doi.org/10.1002/2015ms000522
    17 https://doi.org/10.1002/2016jd025620
    18 https://doi.org/10.1016/j.atmosenv.2003.09.054
    19 https://doi.org/10.1016/j.atmosenv.2006.03.016
    20 https://doi.org/10.1016/j.atmosenv.2006.04.044
    21 https://doi.org/10.1016/j.atmosenv.2009.08.026
    22 https://doi.org/10.1016/j.atmosenv.2010.05.056
    23 https://doi.org/10.1016/j.atmosenv.2016.06.075
    24 https://doi.org/10.1016/j.jqsrt.2014.10.011
    25 https://doi.org/10.1016/j.partic.2012.04.005
    26 https://doi.org/10.1016/j.quaint.2014.11.062
    27 https://doi.org/10.1016/j.rse.2009.08.009
    28 https://doi.org/10.1016/j.saa.2011.08.021
    29 https://doi.org/10.1016/s1352-2310(96)00300-7
    30 https://doi.org/10.1016/s1352-2310(99)00349-0
    31 https://doi.org/10.1021/es5009399
    32 https://doi.org/10.1029/2003gl018174
    33 https://doi.org/10.1029/2004jd005025
    34 https://doi.org/10.1029/2010gl045081
    35 https://doi.org/10.1029/2012jd018143
    36 https://doi.org/10.1109/iembs.2010.5628061
    37 https://doi.org/10.1109/tgrs.2012.2214038
    38 https://doi.org/10.1126/science.aaf7271
    39 https://doi.org/10.1175/1520-0450(1972)011<0482:doahdb>2.0.co;2
    40 https://doi.org/10.1175/1520-0493(2000)128<3187:anblms>2.0.co;2
    41 https://doi.org/10.1175/2010jamc2432.1
    42 https://doi.org/10.1175/jcli3417.1
    43 https://doi.org/10.1289/ehp.1409481
    44 https://doi.org/10.1364/ao.38.000945
    45 https://doi.org/10.3788/col20090709.0753
    46 https://doi.org/10.5194/acp-13-4501-2013
    47 https://doi.org/10.5194/acp-14-6717-2014
    48 https://doi.org/10.5194/acp-15-4279-2015
    49 https://doi.org/10.5194/acp-16-13309-2016
    50 https://doi.org/10.5194/acp-16-4927-2016
    51 https://doi.org/10.5194/acp-16-6913-2016
    52 https://doi.org/10.5194/acp-16-9951-2016
    53 https://doi.org/10.5194/amt-7-173-2014
    54 https://doi.org/10.5194/amt-8-1157-2015
    55 https://doi.org/10.5194/amt-8-1789-2015
    56 schema:datePublished 2018-04
    57 schema:datePublishedReg 2018-04-01
    58 schema:description Few studies have specifically focused on the validation and spatiotemporal distribution of planetary boundary layer height (PBLH) and relative humidity (RH) data in China. In this analysis, continuous PBLH and surface-level RH data simulated from GEOS-5 between 2004 and 2012, were validated against ground-based observations. Overall, the simulated RH was consistent with the statistical data from meteorological stations, with a correlation coefficient of 0.78 and a slope of 0.9. However, the simulated PBLH was underestimated compared to LIDAR data by a factor of approximately two, which was primarily because of poor simulation in late summer and early autumn. We further examined the spatiotemporal distribution characteristics of two factors in four regions—North China, South China, Northwest China, and the Tibetan Plateau. The results showed that the annual PBLH trends in all regions were fairly moderate but sensitive to solar radiation and precipitation, which explains why the PBLH values were ranked in order from largest to smallest as follows: Tibetan Plateau, Northwest China, North China, and South China. Strong seasonal variation of the PBLH exhibited high values in summer and low values in winter, which was also consistent with the turbulent vertical exchange. Not surprisingly, the highest RH in South China and the lowest RH in desert areas of Northwest China (less than 30%). Seasonally, South China exhibited little variation, whereas Northwest China exhibited its highest humidity in winter and lowest humidity in spring, the maximum values in the other regions were obtained from July to September.
    59 schema:genre research_article
    60 schema:inLanguage en
    61 schema:isAccessibleForFree false
    62 schema:isPartOf N8124fcb20cca44d984ba1a7d11bb91c8
    63 N8cbc1bb88b6d4c2aab4288d801d89043
    64 sg:journal.1135901
    65 schema:name Validation and Spatiotemporal Distribution of GEOS-5–Based Planetary Boundary Layer Height and Relative Humidity in China
    66 schema:pagination 479-492
    67 schema:productId N1892650c2971498e8919aed005c92b58
    68 N77ff2839d58f4f79bd3445c35698ca81
    69 Na3964fe4265943c5a2db7307e3352954
    70 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101076712
    71 https://doi.org/10.1007/s00376-017-6275-3
    72 schema:sdDatePublished 2019-04-10T14:02
    73 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    74 schema:sdPublisher N6c752f13ac6a4a92bdbdb2e267ffc979
    75 schema:url http://link.springer.com/10.1007/s00376-017-6275-3
    76 sgo:license sg:explorer/license/
    77 sgo:sdDataset articles
    78 rdf:type schema:ScholarlyArticle
    79 N05a254ddde6e47ed83c2bd9595473fca rdf:first sg:person.012754770354.37
    80 rdf:rest N606f7409a8684282bac6a81be5bec35f
    81 N0fb0592e6cc04ed88664d83b781d677f rdf:first sg:person.010255216467.10
    82 rdf:rest N28fece5ac6004173a0ec9d5efeba5b4f
    83 N1892650c2971498e8919aed005c92b58 schema:name doi
    84 schema:value 10.1007/s00376-017-6275-3
    85 rdf:type schema:PropertyValue
    86 N28fece5ac6004173a0ec9d5efeba5b4f rdf:first sg:person.016513234112.70
    87 rdf:rest N351b0c90f1234f1e985a7066076dbe93
    88 N351b0c90f1234f1e985a7066076dbe93 rdf:first sg:person.0747524203.10
    89 rdf:rest Ne57a396ffa834d5a85b8443a84071d00
    90 N606f7409a8684282bac6a81be5bec35f rdf:first sg:person.011214700150.57
    91 rdf:rest rdf:nil
    92 N6c752f13ac6a4a92bdbdb2e267ffc979 schema:name Springer Nature - SN SciGraph project
    93 rdf:type schema:Organization
    94 N77ff2839d58f4f79bd3445c35698ca81 schema:name dimensions_id
    95 schema:value pub.1101076712
    96 rdf:type schema:PropertyValue
    97 N8124fcb20cca44d984ba1a7d11bb91c8 schema:volumeNumber 35
    98 rdf:type schema:PublicationVolume
    99 N8cbc1bb88b6d4c2aab4288d801d89043 schema:issueNumber 4
    100 rdf:type schema:PublicationIssue
    101 Na3964fe4265943c5a2db7307e3352954 schema:name readcube_id
    102 schema:value 59f0da196833722de54dc51579de7035257bd34d9c08a3a689597b426a2f75b3
    103 rdf:type schema:PropertyValue
    104 Ne2053890a3f244a3996f69088473c336 rdf:first sg:person.012573766172.18
    105 rdf:rest N0fb0592e6cc04ed88664d83b781d677f
    106 Ne57a396ffa834d5a85b8443a84071d00 rdf:first sg:person.014407044335.43
    107 rdf:rest N05a254ddde6e47ed83c2bd9595473fca
    108 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    109 schema:name Engineering
    110 rdf:type schema:DefinedTerm
    111 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
    112 schema:name Interdisciplinary Engineering
    113 rdf:type schema:DefinedTerm
    114 sg:journal.1135901 schema:issn 0256-1530
    115 1861-9533
    116 schema:name Advances in Atmospheric Sciences
    117 rdf:type schema:Periodical
    118 sg:person.010255216467.10 schema:affiliation https://www.grid.ac/institutes/grid.458443.a
    119 schema:familyName Li
    120 schema:givenName Shenshen
    121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010255216467.10
    122 rdf:type schema:Person
    123 sg:person.011214700150.57 schema:affiliation https://www.grid.ac/institutes/grid.410726.6
    124 schema:familyName Wang
    125 schema:givenName Hongmei
    126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011214700150.57
    127 rdf:type schema:Person
    128 sg:person.012573766172.18 schema:affiliation https://www.grid.ac/institutes/grid.410726.6
    129 schema:familyName Si
    130 schema:givenName Yidan
    131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012573766172.18
    132 rdf:type schema:Person
    133 sg:person.012754770354.37 schema:affiliation https://www.grid.ac/institutes/grid.410726.6
    134 schema:familyName Wang
    135 schema:givenName Yang
    136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012754770354.37
    137 rdf:type schema:Person
    138 sg:person.014407044335.43 schema:affiliation https://www.grid.ac/institutes/grid.458443.a
    139 schema:familyName Wang
    140 schema:givenName Zifeng
    141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014407044335.43
    142 rdf:type schema:Person
    143 sg:person.016513234112.70 schema:affiliation https://www.grid.ac/institutes/grid.458443.a
    144 schema:familyName Chen
    145 schema:givenName Liangfu
    146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016513234112.70
    147 rdf:type schema:Person
    148 sg:person.0747524203.10 schema:affiliation https://www.grid.ac/institutes/grid.458443.a
    149 schema:familyName Yu
    150 schema:givenName Chao
    151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0747524203.10
    152 rdf:type schema:Person
    153 sg:pub.10.1007/bf02930876 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028622782
    154 https://doi.org/10.1007/bf02930876
    155 rdf:type schema:CreativeWork
    156 sg:pub.10.1007/s00382-010-0852-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050524594
    157 https://doi.org/10.1007/s00382-010-0852-9
    158 rdf:type schema:CreativeWork
    159 sg:pub.10.1007/s10546-005-9035-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046920612
    160 https://doi.org/10.1007/s10546-005-9035-3
    161 rdf:type schema:CreativeWork
    162 sg:pub.10.1007/s10546-009-9373-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015029198
    163 https://doi.org/10.1007/s10546-009-9373-7
    164 rdf:type schema:CreativeWork
    165 sg:pub.10.1007/s10546-011-9608-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048900112
    166 https://doi.org/10.1007/s10546-011-9608-2
    167 rdf:type schema:CreativeWork
    168 sg:pub.10.1007/s11356-015-5562-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041470561
    169 https://doi.org/10.1007/s11356-015-5562-8
    170 rdf:type schema:CreativeWork
    171 sg:pub.10.1007/s11430-012-4503-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027180341
    172 https://doi.org/10.1007/s11430-012-4503-3
    173 rdf:type schema:CreativeWork
    174 sg:pub.10.1007/s11431-014-5639-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052752959
    175 https://doi.org/10.1007/s11431-014-5639-5
    176 rdf:type schema:CreativeWork
    177 sg:pub.10.1007/s13351-012-0501-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012756761
    178 https://doi.org/10.1007/s13351-012-0501-9
    179 rdf:type schema:CreativeWork
    180 sg:pub.10.1023/a:1002790424133 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002578408
    181 https://doi.org/10.1023/a:1002790424133
    182 rdf:type schema:CreativeWork
    183 sg:pub.10.1038/srep27151 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000618690
    184 https://doi.org/10.1038/srep27151
    185 rdf:type schema:CreativeWork
    186 https://app.dimensions.ai/details/publication/pub.1077967870 schema:CreativeWork
    187 https://doi.org/10.1002/2015ms000522 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042328842
    188 rdf:type schema:CreativeWork
    189 https://doi.org/10.1002/2016jd025620 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084761040
    190 rdf:type schema:CreativeWork
    191 https://doi.org/10.1016/j.atmosenv.2003.09.054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019489174
    192 rdf:type schema:CreativeWork
    193 https://doi.org/10.1016/j.atmosenv.2006.03.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053199757
    194 rdf:type schema:CreativeWork
    195 https://doi.org/10.1016/j.atmosenv.2006.04.044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005827008
    196 rdf:type schema:CreativeWork
    197 https://doi.org/10.1016/j.atmosenv.2009.08.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002537898
    198 rdf:type schema:CreativeWork
    199 https://doi.org/10.1016/j.atmosenv.2010.05.056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047371443
    200 rdf:type schema:CreativeWork
    201 https://doi.org/10.1016/j.atmosenv.2016.06.075 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008794056
    202 rdf:type schema:CreativeWork
    203 https://doi.org/10.1016/j.jqsrt.2014.10.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021162570
    204 rdf:type schema:CreativeWork
    205 https://doi.org/10.1016/j.partic.2012.04.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007907550
    206 rdf:type schema:CreativeWork
    207 https://doi.org/10.1016/j.quaint.2014.11.062 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015930305
    208 rdf:type schema:CreativeWork
    209 https://doi.org/10.1016/j.rse.2009.08.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013080137
    210 rdf:type schema:CreativeWork
    211 https://doi.org/10.1016/j.saa.2011.08.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034157993
    212 rdf:type schema:CreativeWork
    213 https://doi.org/10.1016/s1352-2310(96)00300-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037337546
    214 rdf:type schema:CreativeWork
    215 https://doi.org/10.1016/s1352-2310(99)00349-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021952232
    216 rdf:type schema:CreativeWork
    217 https://doi.org/10.1021/es5009399 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055507774
    218 rdf:type schema:CreativeWork
    219 https://doi.org/10.1029/2003gl018174 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040540408
    220 rdf:type schema:CreativeWork
    221 https://doi.org/10.1029/2004jd005025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012900431
    222 rdf:type schema:CreativeWork
    223 https://doi.org/10.1029/2010gl045081 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032069936
    224 rdf:type schema:CreativeWork
    225 https://doi.org/10.1029/2012jd018143 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021709509
    226 rdf:type schema:CreativeWork
    227 https://doi.org/10.1109/iembs.2010.5628061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1078306311
    228 rdf:type schema:CreativeWork
    229 https://doi.org/10.1109/tgrs.2012.2214038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061612539
    230 rdf:type schema:CreativeWork
    231 https://doi.org/10.1126/science.aaf7271 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046914980
    232 rdf:type schema:CreativeWork
    233 https://doi.org/10.1175/1520-0450(1972)011<0482:doahdb>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013520070
    234 rdf:type schema:CreativeWork
    235 https://doi.org/10.1175/1520-0493(2000)128<3187:anblms>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013199495
    236 rdf:type schema:CreativeWork
    237 https://doi.org/10.1175/2010jamc2432.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039448900
    238 rdf:type schema:CreativeWork
    239 https://doi.org/10.1175/jcli3417.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047628578
    240 rdf:type schema:CreativeWork
    241 https://doi.org/10.1289/ehp.1409481 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021977831
    242 rdf:type schema:CreativeWork
    243 https://doi.org/10.1364/ao.38.000945 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065114036
    244 rdf:type schema:CreativeWork
    245 https://doi.org/10.3788/col20090709.0753 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071399033
    246 rdf:type schema:CreativeWork
    247 https://doi.org/10.5194/acp-13-4501-2013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011850342
    248 rdf:type schema:CreativeWork
    249 https://doi.org/10.5194/acp-14-6717-2014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072651721
    250 rdf:type schema:CreativeWork
    251 https://doi.org/10.5194/acp-15-4279-2015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042978810
    252 rdf:type schema:CreativeWork
    253 https://doi.org/10.5194/acp-16-13309-2016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031536888
    254 rdf:type schema:CreativeWork
    255 https://doi.org/10.5194/acp-16-4927-2016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072652816
    256 rdf:type schema:CreativeWork
    257 https://doi.org/10.5194/acp-16-6913-2016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072652996
    258 rdf:type schema:CreativeWork
    259 https://doi.org/10.5194/acp-16-9951-2016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016655263
    260 rdf:type schema:CreativeWork
    261 https://doi.org/10.5194/amt-7-173-2014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013979148
    262 rdf:type schema:CreativeWork
    263 https://doi.org/10.5194/amt-8-1157-2015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024306912
    264 rdf:type schema:CreativeWork
    265 https://doi.org/10.5194/amt-8-1789-2015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042086194
    266 rdf:type schema:CreativeWork
    267 https://www.grid.ac/institutes/grid.410726.6 schema:alternateName University of Chinese Academy of Sciences
    268 schema:name State Key Laboratory of Remote Sensing Sciences, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, 100101, Beijing, China
    269 University of Chinese Academy of Sciences, 100049, Beijing, China
    270 rdf:type schema:Organization
    271 https://www.grid.ac/institutes/grid.458443.a schema:alternateName Institute of Remote Sensing and Digital Earth
    272 schema:name State Key Laboratory of Remote Sensing Sciences, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, 100101, Beijing, China
    273 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...