Asymmetry of surface climate change under RCP2.6 projections from the CMIP5 models View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2013-05

AUTHORS

Xiaoge Xin, Yanjie Cheng, Fang Wang, Tongwen Wu, Jie Zhang

ABSTRACT

The multi-model ensemble (MME) of 20 models from the Coupled Model Intercomparison Project Phase Five (CMIP5) was used to analyze surface climate change in the 21st century under the representative concentration pathway RCP2.6, to reflect emission mitigation efforts. The maximum increase of surface air temperature (SAT) is 1.86°C relative to the pre-industrial level, achieving the target to limit the global warming to 2°C. Associated with the “increase-peak-decline” greenhouse gases (GHGs) concentration pathway of RCP2.6, the global mean SAT of MME shows opposite trends during two time periods: warming during 2006–55 and cooling during 2056–2100. Our results indicate that spatial distribution of the linear trend of SAT during the warming period exhibited asymmetrical features compared to that during the cooling period. The warming during 2006–55 is distributed globally, while the cooling during 2056–2100 mainly occurred in the NH, the South Indian Ocean, and the tropical South Atlantic Ocean. Different dominant roles of heat flux in the two time periods partly explain the asymmetry. During the warming period, the latent heat flux and shortwave radiation both play major roles in heating the surface air. During the cooling period, the increase of net longwave radiation partly explains the cooling in the tropics and subtropics, which is associated with the decrease of total cloud amount. The decrease of the shortwave radiation accounts for the prominent cooling in the high latitudes of the NH. The surface sensible heat flux, latent heat flux, and shortwave radiation collectively contribute to the especial warming phenomenon in the high-latitude of the SH during the cooling period. More... »

PAGES

796-805

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00376-012-2151-3

DOI

http://dx.doi.org/10.1007/s00376-012-2151-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1032120453


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Beijing Climate Center, China Meteorological Administration, 100081, Beijing, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xin", 
        "givenName": "Xiaoge", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Beijing Climate Center, China Meteorological Administration, 100081, Beijing, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cheng", 
        "givenName": "Yanjie", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Beijing Climate Center, China Meteorological Administration, 100081, Beijing, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Fang", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Beijing Climate Center, China Meteorological Administration, 100081, Beijing, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wu", 
        "givenName": "Tongwen", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Beijing Climate Center, China Meteorological Administration, 100081, Beijing, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Jie", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00382-007-0238-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001803638", 
          "https://doi.org/10.1007/s00382-007-0238-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-007-0238-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001803638", 
          "https://doi.org/10.1007/s00382-007-0238-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0442(1991)004<0785:troaco>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004954487"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08823", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006069800", 
          "https://doi.org/10.1038/nature08823"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08823", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006069800", 
          "https://doi.org/10.1038/nature08823"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2151/jmsj.2013-401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009198197"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2003gl019140", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011845756"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/jcli-d-11-00240.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013960343"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10584-011-0148-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021241034", 
          "https://doi.org/10.1007/s10584-011-0148-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10584-011-0152-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023868005", 
          "https://doi.org/10.1007/s10584-011-0152-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-003-0332-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027088895", 
          "https://doi.org/10.1007/s00382-003-0332-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/2011jcli3873.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032186248"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/2007jcli1936.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037265299"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/342660a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042981833", 
          "https://doi.org/10.1038/342660a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10584-011-0156-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045851916", 
          "https://doi.org/10.1007/s10584-011-0156-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/351027a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048642785", 
          "https://doi.org/10.1038/351027a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/bams-d-11-00094.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051805105"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-05", 
    "datePublishedReg": "2013-05-01", 
    "description": "The multi-model ensemble (MME) of 20 models from the Coupled Model Intercomparison Project Phase Five (CMIP5) was used to analyze surface climate change in the 21st century under the representative concentration pathway RCP2.6, to reflect emission mitigation efforts. The maximum increase of surface air temperature (SAT) is 1.86\u00b0C relative to the pre-industrial level, achieving the target to limit the global warming to 2\u00b0C. Associated with the \u201cincrease-peak-decline\u201d greenhouse gases (GHGs) concentration pathway of RCP2.6, the global mean SAT of MME shows opposite trends during two time periods: warming during 2006\u201355 and cooling during 2056\u20132100. Our results indicate that spatial distribution of the linear trend of SAT during the warming period exhibited asymmetrical features compared to that during the cooling period. The warming during 2006\u201355 is distributed globally, while the cooling during 2056\u20132100 mainly occurred in the NH, the South Indian Ocean, and the tropical South Atlantic Ocean. Different dominant roles of heat flux in the two time periods partly explain the asymmetry. During the warming period, the latent heat flux and shortwave radiation both play major roles in heating the surface air. During the cooling period, the increase of net longwave radiation partly explains the cooling in the tropics and subtropics, which is associated with the decrease of total cloud amount. The decrease of the shortwave radiation accounts for the prominent cooling in the high latitudes of the NH. The surface sensible heat flux, latent heat flux, and shortwave radiation collectively contribute to the especial warming phenomenon in the high-latitude of the SH during the cooling period.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00376-012-2151-3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1135901", 
        "issn": [
          "0256-1530", 
          "1861-9533"
        ], 
        "name": "Advances in Atmospheric Sciences", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "30"
      }
    ], 
    "name": "Asymmetry of surface climate change under RCP2.6 projections from the CMIP5 models", 
    "pagination": "796-805", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "990428a279e20b091c961a5b3f4ff102f90073b0b2efb5e34e757d2cd2dde410"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00376-012-2151-3"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1032120453"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00376-012-2151-3", 
      "https://app.dimensions.ai/details/publication/pub.1032120453"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T21:30", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000482.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s00376-012-2151-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00376-012-2151-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00376-012-2151-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00376-012-2151-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00376-012-2151-3'


 

This table displays all metadata directly associated to this object as RDF triples.

144 TRIPLES      21 PREDICATES      42 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00376-012-2151-3 schema:about anzsrc-for:09
2 anzsrc-for:0915
3 schema:author Ndfaeccd279674667bfaaebf342c244e6
4 schema:citation sg:pub.10.1007/s00382-003-0332-6
5 sg:pub.10.1007/s00382-007-0238-9
6 sg:pub.10.1007/s10584-011-0148-z
7 sg:pub.10.1007/s10584-011-0152-3
8 sg:pub.10.1007/s10584-011-0156-z
9 sg:pub.10.1038/342660a0
10 sg:pub.10.1038/351027a0
11 sg:pub.10.1038/nature08823
12 https://doi.org/10.1029/2003gl019140
13 https://doi.org/10.1175/1520-0442(1991)004<0785:troaco>2.0.co;2
14 https://doi.org/10.1175/2007jcli1936.1
15 https://doi.org/10.1175/2011jcli3873.1
16 https://doi.org/10.1175/bams-d-11-00094.1
17 https://doi.org/10.1175/jcli-d-11-00240.1
18 https://doi.org/10.2151/jmsj.2013-401
19 schema:datePublished 2013-05
20 schema:datePublishedReg 2013-05-01
21 schema:description The multi-model ensemble (MME) of 20 models from the Coupled Model Intercomparison Project Phase Five (CMIP5) was used to analyze surface climate change in the 21st century under the representative concentration pathway RCP2.6, to reflect emission mitigation efforts. The maximum increase of surface air temperature (SAT) is 1.86°C relative to the pre-industrial level, achieving the target to limit the global warming to 2°C. Associated with the “increase-peak-decline” greenhouse gases (GHGs) concentration pathway of RCP2.6, the global mean SAT of MME shows opposite trends during two time periods: warming during 2006–55 and cooling during 2056–2100. Our results indicate that spatial distribution of the linear trend of SAT during the warming period exhibited asymmetrical features compared to that during the cooling period. The warming during 2006–55 is distributed globally, while the cooling during 2056–2100 mainly occurred in the NH, the South Indian Ocean, and the tropical South Atlantic Ocean. Different dominant roles of heat flux in the two time periods partly explain the asymmetry. During the warming period, the latent heat flux and shortwave radiation both play major roles in heating the surface air. During the cooling period, the increase of net longwave radiation partly explains the cooling in the tropics and subtropics, which is associated with the decrease of total cloud amount. The decrease of the shortwave radiation accounts for the prominent cooling in the high latitudes of the NH. The surface sensible heat flux, latent heat flux, and shortwave radiation collectively contribute to the especial warming phenomenon in the high-latitude of the SH during the cooling period.
22 schema:genre research_article
23 schema:inLanguage en
24 schema:isAccessibleForFree false
25 schema:isPartOf N233d3898273c45349919e5a4105116d2
26 Na9f04ac6fc5b4e968f30b96836379324
27 sg:journal.1135901
28 schema:name Asymmetry of surface climate change under RCP2.6 projections from the CMIP5 models
29 schema:pagination 796-805
30 schema:productId N635fd15888e643d098ceeb71f80ce9b0
31 N9362a28603d945e2a9547257e7ac1d21
32 N9e858b00a1384131ba7285579278ee93
33 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032120453
34 https://doi.org/10.1007/s00376-012-2151-3
35 schema:sdDatePublished 2019-04-10T21:30
36 schema:sdLicense https://scigraph.springernature.com/explorer/license/
37 schema:sdPublisher N209d38fa116c46868c985aded98b1783
38 schema:url http://link.springer.com/10.1007/s00376-012-2151-3
39 sgo:license sg:explorer/license/
40 sgo:sdDataset articles
41 rdf:type schema:ScholarlyArticle
42 N0b911fff647d4ece9847e131e3bbff75 schema:name Beijing Climate Center, China Meteorological Administration, 100081, Beijing, India
43 rdf:type schema:Organization
44 N0f455cd5c1824fe8becf4e812e7ea8c4 schema:affiliation Nb679f4491c28437197ad714156952fe8
45 schema:familyName Cheng
46 schema:givenName Yanjie
47 rdf:type schema:Person
48 N1499b8ea43964ad3a088733a288feee7 rdf:first N0f455cd5c1824fe8becf4e812e7ea8c4
49 rdf:rest Nd9e59d8daa7e47158bf2beca2d0751fe
50 N209d38fa116c46868c985aded98b1783 schema:name Springer Nature - SN SciGraph project
51 rdf:type schema:Organization
52 N233d3898273c45349919e5a4105116d2 schema:issueNumber 3
53 rdf:type schema:PublicationIssue
54 N261f71f975294208b48250951b8db161 schema:affiliation N0b911fff647d4ece9847e131e3bbff75
55 schema:familyName Wu
56 schema:givenName Tongwen
57 rdf:type schema:Person
58 N41e9a922e04e440faf7d98064261cafb schema:affiliation Neb65bd8cb36d42018e057a0a68b80617
59 schema:familyName Zhang
60 schema:givenName Jie
61 rdf:type schema:Person
62 N635fd15888e643d098ceeb71f80ce9b0 schema:name doi
63 schema:value 10.1007/s00376-012-2151-3
64 rdf:type schema:PropertyValue
65 N6e4af10fd3424eca805d2d9f4bd7362c schema:name Beijing Climate Center, China Meteorological Administration, 100081, Beijing, India
66 rdf:type schema:Organization
67 N8f1fb30c5d3e472fbc78078a3e3ac853 schema:affiliation N6e4af10fd3424eca805d2d9f4bd7362c
68 schema:familyName Xin
69 schema:givenName Xiaoge
70 rdf:type schema:Person
71 N9362a28603d945e2a9547257e7ac1d21 schema:name dimensions_id
72 schema:value pub.1032120453
73 rdf:type schema:PropertyValue
74 N9e858b00a1384131ba7285579278ee93 schema:name readcube_id
75 schema:value 990428a279e20b091c961a5b3f4ff102f90073b0b2efb5e34e757d2cd2dde410
76 rdf:type schema:PropertyValue
77 Na908a0e4f05f45048ca628838a57a04f rdf:first N41e9a922e04e440faf7d98064261cafb
78 rdf:rest rdf:nil
79 Na9f04ac6fc5b4e968f30b96836379324 schema:volumeNumber 30
80 rdf:type schema:PublicationVolume
81 Nad1b4e2e1dce467aa9ff29ead8f3c463 schema:name Beijing Climate Center, China Meteorological Administration, 100081, Beijing, India
82 rdf:type schema:Organization
83 Nb679f4491c28437197ad714156952fe8 schema:name Beijing Climate Center, China Meteorological Administration, 100081, Beijing, India
84 rdf:type schema:Organization
85 Nc913ff9f5d144fe09d6879a64b018611 rdf:first N261f71f975294208b48250951b8db161
86 rdf:rest Na908a0e4f05f45048ca628838a57a04f
87 Nd9e59d8daa7e47158bf2beca2d0751fe rdf:first Nf06decff72964a85b3648c029e52e79c
88 rdf:rest Nc913ff9f5d144fe09d6879a64b018611
89 Ndfaeccd279674667bfaaebf342c244e6 rdf:first N8f1fb30c5d3e472fbc78078a3e3ac853
90 rdf:rest N1499b8ea43964ad3a088733a288feee7
91 Neb65bd8cb36d42018e057a0a68b80617 schema:name Beijing Climate Center, China Meteorological Administration, 100081, Beijing, India
92 rdf:type schema:Organization
93 Nf06decff72964a85b3648c029e52e79c schema:affiliation Nad1b4e2e1dce467aa9ff29ead8f3c463
94 schema:familyName Wang
95 schema:givenName Fang
96 rdf:type schema:Person
97 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
98 schema:name Engineering
99 rdf:type schema:DefinedTerm
100 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
101 schema:name Interdisciplinary Engineering
102 rdf:type schema:DefinedTerm
103 sg:journal.1135901 schema:issn 0256-1530
104 1861-9533
105 schema:name Advances in Atmospheric Sciences
106 rdf:type schema:Periodical
107 sg:pub.10.1007/s00382-003-0332-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027088895
108 https://doi.org/10.1007/s00382-003-0332-6
109 rdf:type schema:CreativeWork
110 sg:pub.10.1007/s00382-007-0238-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001803638
111 https://doi.org/10.1007/s00382-007-0238-9
112 rdf:type schema:CreativeWork
113 sg:pub.10.1007/s10584-011-0148-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1021241034
114 https://doi.org/10.1007/s10584-011-0148-z
115 rdf:type schema:CreativeWork
116 sg:pub.10.1007/s10584-011-0152-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023868005
117 https://doi.org/10.1007/s10584-011-0152-3
118 rdf:type schema:CreativeWork
119 sg:pub.10.1007/s10584-011-0156-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1045851916
120 https://doi.org/10.1007/s10584-011-0156-z
121 rdf:type schema:CreativeWork
122 sg:pub.10.1038/342660a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042981833
123 https://doi.org/10.1038/342660a0
124 rdf:type schema:CreativeWork
125 sg:pub.10.1038/351027a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048642785
126 https://doi.org/10.1038/351027a0
127 rdf:type schema:CreativeWork
128 sg:pub.10.1038/nature08823 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006069800
129 https://doi.org/10.1038/nature08823
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1029/2003gl019140 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011845756
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1175/1520-0442(1991)004<0785:troaco>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004954487
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1175/2007jcli1936.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037265299
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1175/2011jcli3873.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032186248
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1175/bams-d-11-00094.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051805105
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1175/jcli-d-11-00240.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013960343
142 rdf:type schema:CreativeWork
143 https://doi.org/10.2151/jmsj.2013-401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009198197
144 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...