Designs in Finite Metric Spaces: A Probabilistic Approach View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2021-05-31

AUTHORS

Minjia Shi, Olivier Rioul, Patrick Solé

ABSTRACT

A finite metric space is called here distance degree regular if its distance degree sequence is the same for every vertex. A notion of designs in such spaces is introduced that generalizes that of designs in Q-polynomial distance-regular graphs. An approximation of their cumulative distribution function, based on the notion of Christoffel function in approximation theory is given. As an application we derive limit laws on the weight distributions of binary orthogonal arrays of strength going to infinity. An analogous result for combinatorial designs of strength going to infinity is given. More... »

PAGES

1653-1667

References to SciGraph publications

  • 2001-07. On the Distance Distributions of BCH Codes and Their Duals in DESIGNS, CODES AND CRYPTOGRAPHY
  • 2015-06-13. An explicit version of the Chebyshev-Markov-Stieltjes inequalities and its applications in JOURNAL OF INEQUALITIES AND APPLICATIONS
  • 1986-12. t-designs in classical association schemes in GRAPHS AND COMBINATORICS
  • 1989. Distance-Regular Graphs in NONE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00373-021-02338-1

    DOI

    http://dx.doi.org/10.1007/s00373-021-02338-1

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1138482168


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Mathematical Sciences, Anhui University, 230601, Hefei, China", 
              "id": "http://www.grid.ac/institutes/grid.252245.6", 
              "name": [
                "Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Mathematical Sciences, Anhui University, 230601, Hefei, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Shi", 
            "givenName": "Minjia", 
            "id": "sg:person.012012432235.16", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012012432235.16"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Telecom ParisTech, Palaiseau, France", 
              "id": "http://www.grid.ac/institutes/grid.463717.0", 
              "name": [
                "Telecom ParisTech, Palaiseau, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Rioul", 
            "givenName": "Olivier", 
            "id": "sg:person.016533503151.57", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016533503151.57"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "I2M, (Aix-Marseille Univ., Centrale Marseille, CNRS), Marseille, France", 
              "id": "http://www.grid.ac/institutes/grid.473594.8", 
              "name": [
                "I2M, (Aix-Marseille Univ., Centrale Marseille, CNRS), Marseille, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sol\u00e9", 
            "givenName": "Patrick", 
            "id": "sg:person.012750235663.02", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012750235663.02"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf01788103", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012713866", 
              "https://doi.org/10.1007/bf01788103"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13660-015-0709-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038662862", 
              "https://doi.org/10.1186/s13660-015-0709-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1011220817609", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030677072", 
              "https://doi.org/10.1023/a:1011220817609"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-74341-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013855957", 
              "https://doi.org/10.1007/978-3-642-74341-2"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2021-05-31", 
        "datePublishedReg": "2021-05-31", 
        "description": "A finite metric space is called here distance degree regular if its distance degree sequence is the same for every vertex. A notion of designs in such spaces is introduced that generalizes that of designs in Q-polynomial distance-regular graphs. An approximation of their cumulative distribution function, based on the notion of Christoffel function in approximation theory is given. As an application we derive limit laws on the weight distributions of binary orthogonal arrays of strength going to infinity. An analogous result for combinatorial designs of strength going to infinity is given.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s00373-021-02338-1", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.8306127", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1136071", 
            "issn": [
              "0911-0119", 
              "1435-5914"
            ], 
            "name": "Graphs and Combinatorics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "5", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "37"
          }
        ], 
        "keywords": [
          "finite metric spaces", 
          "metric spaces", 
          "distance degree sequence", 
          "cumulative distribution function", 
          "approximation theory", 
          "distance-regular graphs", 
          "degree sequence", 
          "limit laws", 
          "distribution function", 
          "combinatorial designs", 
          "analogous results", 
          "distance degree", 
          "such spaces", 
          "Christoffel functions", 
          "probabilistic approach", 
          "infinity", 
          "polynomial distance-regular graphs", 
          "space", 
          "binary orthogonal arrays", 
          "approximation", 
          "orthogonal array", 
          "vertices", 
          "graph", 
          "theory", 
          "function", 
          "notion", 
          "law", 
          "design", 
          "distribution", 
          "applications", 
          "approach", 
          "array", 
          "weight distribution", 
          "strength", 
          "results", 
          "degree", 
          "sequence", 
          "notion of design"
        ], 
        "name": "Designs in Finite Metric Spaces: A Probabilistic Approach", 
        "pagination": "1653-1667", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1138482168"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00373-021-02338-1"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00373-021-02338-1", 
          "https://app.dimensions.ai/details/publication/pub.1138482168"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T19:03", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_912.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s00373-021-02338-1"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00373-021-02338-1'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00373-021-02338-1'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00373-021-02338-1'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00373-021-02338-1'


     

    This table displays all metadata directly associated to this object as RDF triples.

    134 TRIPLES      22 PREDICATES      67 URIs      55 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00373-021-02338-1 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N246071f325c74f1f9303252525cb703a
    4 schema:citation sg:pub.10.1007/978-3-642-74341-2
    5 sg:pub.10.1007/bf01788103
    6 sg:pub.10.1023/a:1011220817609
    7 sg:pub.10.1186/s13660-015-0709-1
    8 schema:datePublished 2021-05-31
    9 schema:datePublishedReg 2021-05-31
    10 schema:description A finite metric space is called here distance degree regular if its distance degree sequence is the same for every vertex. A notion of designs in such spaces is introduced that generalizes that of designs in Q-polynomial distance-regular graphs. An approximation of their cumulative distribution function, based on the notion of Christoffel function in approximation theory is given. As an application we derive limit laws on the weight distributions of binary orthogonal arrays of strength going to infinity. An analogous result for combinatorial designs of strength going to infinity is given.
    11 schema:genre article
    12 schema:inLanguage en
    13 schema:isAccessibleForFree true
    14 schema:isPartOf Na2c6eee57d574519b960b1e54cdfe5f0
    15 Nc30cb3c6796d40bc93ffe13fefcd6a13
    16 sg:journal.1136071
    17 schema:keywords Christoffel functions
    18 analogous results
    19 applications
    20 approach
    21 approximation
    22 approximation theory
    23 array
    24 binary orthogonal arrays
    25 combinatorial designs
    26 cumulative distribution function
    27 degree
    28 degree sequence
    29 design
    30 distance degree
    31 distance degree sequence
    32 distance-regular graphs
    33 distribution
    34 distribution function
    35 finite metric spaces
    36 function
    37 graph
    38 infinity
    39 law
    40 limit laws
    41 metric spaces
    42 notion
    43 notion of design
    44 orthogonal array
    45 polynomial distance-regular graphs
    46 probabilistic approach
    47 results
    48 sequence
    49 space
    50 strength
    51 such spaces
    52 theory
    53 vertices
    54 weight distribution
    55 schema:name Designs in Finite Metric Spaces: A Probabilistic Approach
    56 schema:pagination 1653-1667
    57 schema:productId N40443425f4364bdfa962188bd77cc45d
    58 Nf2f4e5ac796444ec92abf0a8321f70d7
    59 schema:sameAs https://app.dimensions.ai/details/publication/pub.1138482168
    60 https://doi.org/10.1007/s00373-021-02338-1
    61 schema:sdDatePublished 2022-01-01T19:03
    62 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    63 schema:sdPublisher N115899c155b84c39bd818755628439e3
    64 schema:url https://doi.org/10.1007/s00373-021-02338-1
    65 sgo:license sg:explorer/license/
    66 sgo:sdDataset articles
    67 rdf:type schema:ScholarlyArticle
    68 N115899c155b84c39bd818755628439e3 schema:name Springer Nature - SN SciGraph project
    69 rdf:type schema:Organization
    70 N246071f325c74f1f9303252525cb703a rdf:first sg:person.012012432235.16
    71 rdf:rest Nc94df6ab916f4a3f8092229d1ce5b89e
    72 N40443425f4364bdfa962188bd77cc45d schema:name doi
    73 schema:value 10.1007/s00373-021-02338-1
    74 rdf:type schema:PropertyValue
    75 N72880852d0914c45a05eb7c4201ba4b8 rdf:first sg:person.012750235663.02
    76 rdf:rest rdf:nil
    77 Na2c6eee57d574519b960b1e54cdfe5f0 schema:volumeNumber 37
    78 rdf:type schema:PublicationVolume
    79 Nc30cb3c6796d40bc93ffe13fefcd6a13 schema:issueNumber 5
    80 rdf:type schema:PublicationIssue
    81 Nc94df6ab916f4a3f8092229d1ce5b89e rdf:first sg:person.016533503151.57
    82 rdf:rest N72880852d0914c45a05eb7c4201ba4b8
    83 Nf2f4e5ac796444ec92abf0a8321f70d7 schema:name dimensions_id
    84 schema:value pub.1138482168
    85 rdf:type schema:PropertyValue
    86 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    87 schema:name Mathematical Sciences
    88 rdf:type schema:DefinedTerm
    89 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    90 schema:name Pure Mathematics
    91 rdf:type schema:DefinedTerm
    92 sg:grant.8306127 http://pending.schema.org/fundedItem sg:pub.10.1007/s00373-021-02338-1
    93 rdf:type schema:MonetaryGrant
    94 sg:journal.1136071 schema:issn 0911-0119
    95 1435-5914
    96 schema:name Graphs and Combinatorics
    97 schema:publisher Springer Nature
    98 rdf:type schema:Periodical
    99 sg:person.012012432235.16 schema:affiliation grid-institutes:grid.252245.6
    100 schema:familyName Shi
    101 schema:givenName Minjia
    102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012012432235.16
    103 rdf:type schema:Person
    104 sg:person.012750235663.02 schema:affiliation grid-institutes:grid.473594.8
    105 schema:familyName Solé
    106 schema:givenName Patrick
    107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012750235663.02
    108 rdf:type schema:Person
    109 sg:person.016533503151.57 schema:affiliation grid-institutes:grid.463717.0
    110 schema:familyName Rioul
    111 schema:givenName Olivier
    112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016533503151.57
    113 rdf:type schema:Person
    114 sg:pub.10.1007/978-3-642-74341-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013855957
    115 https://doi.org/10.1007/978-3-642-74341-2
    116 rdf:type schema:CreativeWork
    117 sg:pub.10.1007/bf01788103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012713866
    118 https://doi.org/10.1007/bf01788103
    119 rdf:type schema:CreativeWork
    120 sg:pub.10.1023/a:1011220817609 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030677072
    121 https://doi.org/10.1023/a:1011220817609
    122 rdf:type schema:CreativeWork
    123 sg:pub.10.1186/s13660-015-0709-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038662862
    124 https://doi.org/10.1186/s13660-015-0709-1
    125 rdf:type schema:CreativeWork
    126 grid-institutes:grid.252245.6 schema:alternateName Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Mathematical Sciences, Anhui University, 230601, Hefei, China
    127 schema:name Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Mathematical Sciences, Anhui University, 230601, Hefei, China
    128 rdf:type schema:Organization
    129 grid-institutes:grid.463717.0 schema:alternateName Telecom ParisTech, Palaiseau, France
    130 schema:name Telecom ParisTech, Palaiseau, France
    131 rdf:type schema:Organization
    132 grid-institutes:grid.473594.8 schema:alternateName I2M, (Aix-Marseille Univ., Centrale Marseille, CNRS), Marseille, France
    133 schema:name I2M, (Aix-Marseille Univ., Centrale Marseille, CNRS), Marseille, France
    134 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...