On the (Signless) Laplacian Permanental Polynomials of Graphs View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03-21

AUTHORS

Shunyi Liu

ABSTRACT

Let G be a graph, and let L(G) and Q(G) denote respectively the Laplacian matrix and the signless Laplacian matrix of G. The Laplacian (respectively, signless Laplacian) permanental polynomial of G is defined as the permanent of the characteristic matrix of L(G) (respectively, Q(G)). In this paper, we give combinatorial expressions for the first five coefficients of the (signless) Laplacian permanental polynomial. The characterizing properties of the (signless) Laplacian permanental polynomial are investigated and some graphs determined by the (signless) Laplacian permanental polynomial are presented. Furthermore, we compute the (signless) Laplacian permanental polynomials for all graphs on at most 10 vertices, and count the number of such graphs for which there is another graph with the same (signless) Laplacian permanental polynomial. More... »

PAGES

1-17

References to SciGraph publications

Journal

TITLE

Graphs and Combinatorics

ISSUE

N/A

VOLUME

N/A

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00373-019-02033-2

DOI

http://dx.doi.org/10.1007/s00373-019-02033-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112898173


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Chang'an University", 
          "id": "https://www.grid.ac/institutes/grid.440661.1", 
          "name": [
            "School of Science, Chang\u2019an University, 710064, Xi\u2019an, Shaanxi, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Shunyi", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0195-6698(03)00100-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003527701"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0195-6698(03)00100-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003527701"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0304-3975(79)90044-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003739738"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.disc.2004.11.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005066775"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.laa.2012.08.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006199937"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/03081080903261467", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009144100"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0024-3795(85)90281-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013495504"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0024-3795(85)90281-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013495504"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00373-011-1057-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015758284", 
          "https://doi.org/10.1007/s00373-011-1057-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0012-365x(86)90091-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019786746"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0012-365x(86)90091-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019786746"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0024-3795(93)00337-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020374863"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00373-014-1451-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023042507", 
          "https://doi.org/10.1007/s00373-014-1451-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/03081088408817603", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025888453"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jsc.2013.09.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028077309"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/03081088608817728", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028210131"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0024-3795(81)90026-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045621099"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0012-365x(84)90127-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047367980"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1201/9781315367996-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049397022"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/03081080902765583", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049523324"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ci0000326", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055399649"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ci0000326", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055399649"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0405036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062844730"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.13001/1081-3810.1637", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064879712"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.13001/1081-3810.1637", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064879712"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.13001/1081-3810.1637", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064879712"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.13001/1081-3810.1637", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064879712"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.amc.2017.01.052", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083829113"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03-21", 
    "datePublishedReg": "2019-03-21", 
    "description": "Let G be a graph, and let L(G) and Q(G) denote respectively the Laplacian matrix and the signless Laplacian matrix of G. The Laplacian (respectively, signless Laplacian) permanental polynomial of G is defined as the permanent of the characteristic matrix of L(G) (respectively, Q(G)). In this paper, we give combinatorial expressions for the first five coefficients of the (signless) Laplacian permanental polynomial. The characterizing properties of the (signless) Laplacian permanental polynomial are investigated and some graphs determined by the (signless) Laplacian permanental polynomial are presented. Furthermore, we compute the (signless) Laplacian permanental polynomials for all graphs on at most 10 vertices, and count the number of such graphs for which there is another graph with the same (signless) Laplacian permanental polynomial.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00373-019-02033-2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136071", 
        "issn": [
          "0911-0119", 
          "1435-5914"
        ], 
        "name": "Graphs and Combinatorics", 
        "type": "Periodical"
      }
    ], 
    "name": "On the (Signless) Laplacian Permanental Polynomials of Graphs", 
    "pagination": "1-17", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "63031be2123eb6a95fa077562e55563d8dbf0b9d2780ac660095f08fba7fa95c"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00373-019-02033-2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112898173"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00373-019-02033-2", 
      "https://app.dimensions.ai/details/publication/pub.1112898173"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:42", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000363_0000000363/records_70056_00000003.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00373-019-02033-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00373-019-02033-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00373-019-02033-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00373-019-02033-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00373-019-02033-2'


 

This table displays all metadata directly associated to this object as RDF triples.

119 TRIPLES      21 PREDICATES      45 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00373-019-02033-2 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N80c90a9c8fac4333b1b317ffae613c2b
4 schema:citation sg:pub.10.1007/s00373-011-1057-7
5 sg:pub.10.1007/s00373-014-1451-z
6 https://doi.org/10.1016/0012-365x(84)90127-4
7 https://doi.org/10.1016/0012-365x(86)90091-9
8 https://doi.org/10.1016/0024-3795(81)90026-4
9 https://doi.org/10.1016/0024-3795(85)90281-2
10 https://doi.org/10.1016/0024-3795(93)00337-y
11 https://doi.org/10.1016/0304-3975(79)90044-6
12 https://doi.org/10.1016/j.amc.2017.01.052
13 https://doi.org/10.1016/j.disc.2004.11.025
14 https://doi.org/10.1016/j.jsc.2013.09.003
15 https://doi.org/10.1016/j.laa.2012.08.026
16 https://doi.org/10.1016/s0195-6698(03)00100-8
17 https://doi.org/10.1021/ci0000326
18 https://doi.org/10.1080/03081080902765583
19 https://doi.org/10.1080/03081080903261467
20 https://doi.org/10.1080/03081088408817603
21 https://doi.org/10.1080/03081088608817728
22 https://doi.org/10.1137/0405036
23 https://doi.org/10.1201/9781315367996-7
24 https://doi.org/10.13001/1081-3810.1637
25 schema:datePublished 2019-03-21
26 schema:datePublishedReg 2019-03-21
27 schema:description Let G be a graph, and let L(G) and Q(G) denote respectively the Laplacian matrix and the signless Laplacian matrix of G. The Laplacian (respectively, signless Laplacian) permanental polynomial of G is defined as the permanent of the characteristic matrix of L(G) (respectively, Q(G)). In this paper, we give combinatorial expressions for the first five coefficients of the (signless) Laplacian permanental polynomial. The characterizing properties of the (signless) Laplacian permanental polynomial are investigated and some graphs determined by the (signless) Laplacian permanental polynomial are presented. Furthermore, we compute the (signless) Laplacian permanental polynomials for all graphs on at most 10 vertices, and count the number of such graphs for which there is another graph with the same (signless) Laplacian permanental polynomial.
28 schema:genre research_article
29 schema:inLanguage en
30 schema:isAccessibleForFree false
31 schema:isPartOf sg:journal.1136071
32 schema:name On the (Signless) Laplacian Permanental Polynomials of Graphs
33 schema:pagination 1-17
34 schema:productId N05c932d2d17642e6a6d8beb452cfde0e
35 N6b8c6646bb034084b7ff435c64357014
36 Nbf48574b1c1f43498848934f56217f22
37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112898173
38 https://doi.org/10.1007/s00373-019-02033-2
39 schema:sdDatePublished 2019-04-11T12:42
40 schema:sdLicense https://scigraph.springernature.com/explorer/license/
41 schema:sdPublisher N0aae4c15cb684e86b29caf168107904e
42 schema:url https://link.springer.com/10.1007%2Fs00373-019-02033-2
43 sgo:license sg:explorer/license/
44 sgo:sdDataset articles
45 rdf:type schema:ScholarlyArticle
46 N05c932d2d17642e6a6d8beb452cfde0e schema:name doi
47 schema:value 10.1007/s00373-019-02033-2
48 rdf:type schema:PropertyValue
49 N0aae4c15cb684e86b29caf168107904e schema:name Springer Nature - SN SciGraph project
50 rdf:type schema:Organization
51 N1978666031b946799952d6db361323fe schema:affiliation https://www.grid.ac/institutes/grid.440661.1
52 schema:familyName Liu
53 schema:givenName Shunyi
54 rdf:type schema:Person
55 N6b8c6646bb034084b7ff435c64357014 schema:name dimensions_id
56 schema:value pub.1112898173
57 rdf:type schema:PropertyValue
58 N80c90a9c8fac4333b1b317ffae613c2b rdf:first N1978666031b946799952d6db361323fe
59 rdf:rest rdf:nil
60 Nbf48574b1c1f43498848934f56217f22 schema:name readcube_id
61 schema:value 63031be2123eb6a95fa077562e55563d8dbf0b9d2780ac660095f08fba7fa95c
62 rdf:type schema:PropertyValue
63 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
64 schema:name Mathematical Sciences
65 rdf:type schema:DefinedTerm
66 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
67 schema:name Pure Mathematics
68 rdf:type schema:DefinedTerm
69 sg:journal.1136071 schema:issn 0911-0119
70 1435-5914
71 schema:name Graphs and Combinatorics
72 rdf:type schema:Periodical
73 sg:pub.10.1007/s00373-011-1057-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015758284
74 https://doi.org/10.1007/s00373-011-1057-7
75 rdf:type schema:CreativeWork
76 sg:pub.10.1007/s00373-014-1451-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1023042507
77 https://doi.org/10.1007/s00373-014-1451-z
78 rdf:type schema:CreativeWork
79 https://doi.org/10.1016/0012-365x(84)90127-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047367980
80 rdf:type schema:CreativeWork
81 https://doi.org/10.1016/0012-365x(86)90091-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019786746
82 rdf:type schema:CreativeWork
83 https://doi.org/10.1016/0024-3795(81)90026-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045621099
84 rdf:type schema:CreativeWork
85 https://doi.org/10.1016/0024-3795(85)90281-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013495504
86 rdf:type schema:CreativeWork
87 https://doi.org/10.1016/0024-3795(93)00337-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1020374863
88 rdf:type schema:CreativeWork
89 https://doi.org/10.1016/0304-3975(79)90044-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003739738
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1016/j.amc.2017.01.052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083829113
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1016/j.disc.2004.11.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005066775
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1016/j.jsc.2013.09.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028077309
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1016/j.laa.2012.08.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006199937
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1016/s0195-6698(03)00100-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003527701
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1021/ci0000326 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055399649
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1080/03081080902765583 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049523324
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1080/03081080903261467 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009144100
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1080/03081088408817603 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025888453
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1080/03081088608817728 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028210131
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1137/0405036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062844730
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1201/9781315367996-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049397022
114 rdf:type schema:CreativeWork
115 https://doi.org/10.13001/1081-3810.1637 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064879712
116 rdf:type schema:CreativeWork
117 https://www.grid.ac/institutes/grid.440661.1 schema:alternateName Chang'an University
118 schema:name School of Science, Chang’an University, 710064, Xi’an, Shaanxi, People’s Republic of China
119 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...