Ontology type: schema:ScholarlyArticle
2019-03-21
AUTHORSShunyi Liu
ABSTRACTLet G be a graph, and let L(G) and Q(G) denote respectively the Laplacian matrix and the signless Laplacian matrix of G. The Laplacian (respectively, signless Laplacian) permanental polynomial of G is defined as the permanent of the characteristic matrix of L(G) (respectively, Q(G)). In this paper, we give combinatorial expressions for the first five coefficients of the (signless) Laplacian permanental polynomial. The characterizing properties of the (signless) Laplacian permanental polynomial are investigated and some graphs determined by the (signless) Laplacian permanental polynomial are presented. Furthermore, we compute the (signless) Laplacian permanental polynomials for all graphs on at most 10 vertices, and count the number of such graphs for which there is another graph with the same (signless) Laplacian permanental polynomial. More... »
PAGES1-17
http://scigraph.springernature.com/pub.10.1007/s00373-019-02033-2
DOIhttp://dx.doi.org/10.1007/s00373-019-02033-2
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1112898173
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Pure Mathematics",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Chang'an University",
"id": "https://www.grid.ac/institutes/grid.440661.1",
"name": [
"School of Science, Chang\u2019an University, 710064, Xi\u2019an, Shaanxi, People\u2019s Republic of China"
],
"type": "Organization"
},
"familyName": "Liu",
"givenName": "Shunyi",
"type": "Person"
}
],
"citation": [
{
"id": "https://doi.org/10.1016/s0195-6698(03)00100-8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1003527701"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/s0195-6698(03)00100-8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1003527701"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/0304-3975(79)90044-6",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1003739738"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.disc.2004.11.025",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1005066775"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.laa.2012.08.026",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1006199937"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1080/03081080903261467",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1009144100"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/0024-3795(85)90281-2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1013495504"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/0024-3795(85)90281-2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1013495504"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00373-011-1057-7",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1015758284",
"https://doi.org/10.1007/s00373-011-1057-7"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/0012-365x(86)90091-9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1019786746"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/0012-365x(86)90091-9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1019786746"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/0024-3795(93)00337-y",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1020374863"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00373-014-1451-z",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1023042507",
"https://doi.org/10.1007/s00373-014-1451-z"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1080/03081088408817603",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1025888453"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.jsc.2013.09.003",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1028077309"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1080/03081088608817728",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1028210131"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/0024-3795(81)90026-4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1045621099"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/0012-365x(84)90127-4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1047367980"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1201/9781315367996-7",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1049397022"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1080/03081080902765583",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1049523324"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1021/ci0000326",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1055399649"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1021/ci0000326",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1055399649"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1137/0405036",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1062844730"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.13001/1081-3810.1637",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1064879712"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.13001/1081-3810.1637",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1064879712"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.13001/1081-3810.1637",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1064879712"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.13001/1081-3810.1637",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1064879712"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.amc.2017.01.052",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1083829113"
],
"type": "CreativeWork"
}
],
"datePublished": "2019-03-21",
"datePublishedReg": "2019-03-21",
"description": "Let G be a graph, and let L(G) and Q(G) denote respectively the Laplacian matrix and the signless Laplacian matrix of G. The Laplacian (respectively, signless Laplacian) permanental polynomial of G is defined as the permanent of the characteristic matrix of L(G) (respectively, Q(G)). In this paper, we give combinatorial expressions for the first five coefficients of the (signless) Laplacian permanental polynomial. The characterizing properties of the (signless) Laplacian permanental polynomial are investigated and some graphs determined by the (signless) Laplacian permanental polynomial are presented. Furthermore, we compute the (signless) Laplacian permanental polynomials for all graphs on at most 10 vertices, and count the number of such graphs for which there is another graph with the same (signless) Laplacian permanental polynomial.",
"genre": "research_article",
"id": "sg:pub.10.1007/s00373-019-02033-2",
"inLanguage": [
"en"
],
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1136071",
"issn": [
"0911-0119",
"1435-5914"
],
"name": "Graphs and Combinatorics",
"type": "Periodical"
}
],
"name": "On the (Signless) Laplacian Permanental Polynomials of Graphs",
"pagination": "1-17",
"productId": [
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"63031be2123eb6a95fa077562e55563d8dbf0b9d2780ac660095f08fba7fa95c"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s00373-019-02033-2"
]
},
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1112898173"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s00373-019-02033-2",
"https://app.dimensions.ai/details/publication/pub.1112898173"
],
"sdDataset": "articles",
"sdDatePublished": "2019-04-11T12:42",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000363_0000000363/records_70056_00000003.jsonl",
"type": "ScholarlyArticle",
"url": "https://link.springer.com/10.1007%2Fs00373-019-02033-2"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00373-019-02033-2'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00373-019-02033-2'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00373-019-02033-2'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00373-019-02033-2'
This table displays all metadata directly associated to this object as RDF triples.
119 TRIPLES
21 PREDICATES
45 URIs
16 LITERALS
5 BLANK NODES