Two Orthogonal 4-Cycle-Free One-Factorizations of Complete Graphs View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03

AUTHORS

Jingjun Bao, Lijun Ji

ABSTRACT

A pair of orthogonal one-factorizations F and G of the complete graph Kn is C4-free if for any two factors F∈F and G∈G the union F∪G does not include a cycle of length four. Such a concept was introduced by Blokhuis et al. (J Combin Theory B 82: 1–18, 2001), who used it to improve the upper bound for two-round rainbow colorings of Kn. In this paper, we focus on constructions for a pair of orthogonal C4-free one-factorizations of the complete graph Kn. Some infinite classes of such orthogonal decompositions are obtained. More... »

PAGES

373-392

References to SciGraph publications

  • 1981-12. Room designs and one-factorizations in AEQUATIONES MATHEMATICAE
  • 1971-06. Puintuplication of Room squares in AEQUATIONES MATHEMATICAE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00373-018-2000-y

    DOI

    http://dx.doi.org/10.1007/s00373-018-2000-y

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1111057361


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Ningbo University", 
              "id": "https://www.grid.ac/institutes/grid.203507.3", 
              "name": [
                "Department of Mathematics, Ningbo University, 315211, Ningbo, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bao", 
            "givenName": "Jingjun", 
            "id": "sg:person.07531500520.10", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07531500520.10"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Soochow University", 
              "id": "https://www.grid.ac/institutes/grid.263761.7", 
              "name": [
                "Department of Mathematics, Soochow University, 215006, Suzhou, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ji", 
            "givenName": "Lijun", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/s0021-9800(69)80022-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002439874"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ffa.2005.05.008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010047784"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/jgt.3190090104", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018029863"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02190160", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033109860", 
              "https://doi.org/10.1007/bf02190160"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02190160", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033109860", 
              "https://doi.org/10.1007/bf02190160"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0012-365x(89)90364-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033770164"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0167-5060(08)70964-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037015269"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01818519", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038922377", 
              "https://doi.org/10.1007/bf01818519"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01818519", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038922377", 
              "https://doi.org/10.1007/bf01818519"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1006/jctb.2000.2016", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044779663"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0097-3165(72)90096-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047536881"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/2371217", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069897941"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1214/aoms/1177698135", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085485077"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-03", 
        "datePublishedReg": "2019-03-01", 
        "description": "A pair of orthogonal one-factorizations F and G of the complete graph Kn is C4-free if for any two factors F\u2208F and G\u2208G the union F\u222aG does not include a cycle of length four. Such a concept was introduced by Blokhuis et al. (J Combin Theory B 82: 1\u201318, 2001), who used it to improve the upper bound for two-round rainbow colorings of Kn. In this paper, we focus on constructions for a pair of orthogonal C4-free one-factorizations of the complete graph Kn. Some infinite classes of such orthogonal decompositions are obtained.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s00373-018-2000-y", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136071", 
            "issn": [
              "0911-0119", 
              "1435-5914"
            ], 
            "name": "Graphs and Combinatorics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "35"
          }
        ], 
        "name": "Two Orthogonal 4-Cycle-Free One-Factorizations of Complete Graphs", 
        "pagination": "373-392", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "3f5c3a981e4dd09d406711b1704ea1a16c480ce4a0eb6fb660569d47de14fc08"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00373-018-2000-y"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1111057361"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00373-018-2000-y", 
          "https://app.dimensions.ai/details/publication/pub.1111057361"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T09:08", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000338_0000000338/records_47957_00000002.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs00373-018-2000-y"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00373-018-2000-y'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00373-018-2000-y'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00373-018-2000-y'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00373-018-2000-y'


     

    This table displays all metadata directly associated to this object as RDF triples.

    105 TRIPLES      21 PREDICATES      38 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00373-018-2000-y schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author Ne3e7f37591e64e9ca8e2ddae4f6d6dd3
    4 schema:citation sg:pub.10.1007/bf01818519
    5 sg:pub.10.1007/bf02190160
    6 https://doi.org/10.1002/jgt.3190090104
    7 https://doi.org/10.1006/jctb.2000.2016
    8 https://doi.org/10.1016/0012-365x(89)90364-6
    9 https://doi.org/10.1016/0097-3165(72)90096-9
    10 https://doi.org/10.1016/j.ffa.2005.05.008
    11 https://doi.org/10.1016/s0021-9800(69)80022-0
    12 https://doi.org/10.1016/s0167-5060(08)70964-6
    13 https://doi.org/10.1214/aoms/1177698135
    14 https://doi.org/10.2307/2371217
    15 schema:datePublished 2019-03
    16 schema:datePublishedReg 2019-03-01
    17 schema:description A pair of orthogonal one-factorizations F and G of the complete graph Kn is C4-free if for any two factors F∈F and G∈G the union F∪G does not include a cycle of length four. Such a concept was introduced by Blokhuis et al. (J Combin Theory B 82: 1–18, 2001), who used it to improve the upper bound for two-round rainbow colorings of Kn. In this paper, we focus on constructions for a pair of orthogonal C4-free one-factorizations of the complete graph Kn. Some infinite classes of such orthogonal decompositions are obtained.
    18 schema:genre research_article
    19 schema:inLanguage en
    20 schema:isAccessibleForFree false
    21 schema:isPartOf Na48dbade80ce49fba95680f6325ea4ae
    22 Nae83d02691e148b49678ac3df2e3c946
    23 sg:journal.1136071
    24 schema:name Two Orthogonal 4-Cycle-Free One-Factorizations of Complete Graphs
    25 schema:pagination 373-392
    26 schema:productId N18a2961525504e93958d5b19f01c1dfa
    27 Nb5a86ef453534e7180a717a6e4bfdcd2
    28 Ne7181d7f718744dea96591724d68bea9
    29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111057361
    30 https://doi.org/10.1007/s00373-018-2000-y
    31 schema:sdDatePublished 2019-04-11T09:08
    32 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    33 schema:sdPublisher Ne032256f437c428ea66e26eafb71fb24
    34 schema:url https://link.springer.com/10.1007%2Fs00373-018-2000-y
    35 sgo:license sg:explorer/license/
    36 sgo:sdDataset articles
    37 rdf:type schema:ScholarlyArticle
    38 N037e4f972b9548f7bf537fe5e9d7bfc7 schema:affiliation https://www.grid.ac/institutes/grid.263761.7
    39 schema:familyName Ji
    40 schema:givenName Lijun
    41 rdf:type schema:Person
    42 N18a2961525504e93958d5b19f01c1dfa schema:name doi
    43 schema:value 10.1007/s00373-018-2000-y
    44 rdf:type schema:PropertyValue
    45 N18b997cf536f4d7c8c918e8d5a5dac56 rdf:first N037e4f972b9548f7bf537fe5e9d7bfc7
    46 rdf:rest rdf:nil
    47 Na48dbade80ce49fba95680f6325ea4ae schema:issueNumber 2
    48 rdf:type schema:PublicationIssue
    49 Nae83d02691e148b49678ac3df2e3c946 schema:volumeNumber 35
    50 rdf:type schema:PublicationVolume
    51 Nb5a86ef453534e7180a717a6e4bfdcd2 schema:name readcube_id
    52 schema:value 3f5c3a981e4dd09d406711b1704ea1a16c480ce4a0eb6fb660569d47de14fc08
    53 rdf:type schema:PropertyValue
    54 Ne032256f437c428ea66e26eafb71fb24 schema:name Springer Nature - SN SciGraph project
    55 rdf:type schema:Organization
    56 Ne3e7f37591e64e9ca8e2ddae4f6d6dd3 rdf:first sg:person.07531500520.10
    57 rdf:rest N18b997cf536f4d7c8c918e8d5a5dac56
    58 Ne7181d7f718744dea96591724d68bea9 schema:name dimensions_id
    59 schema:value pub.1111057361
    60 rdf:type schema:PropertyValue
    61 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    62 schema:name Mathematical Sciences
    63 rdf:type schema:DefinedTerm
    64 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    65 schema:name Pure Mathematics
    66 rdf:type schema:DefinedTerm
    67 sg:journal.1136071 schema:issn 0911-0119
    68 1435-5914
    69 schema:name Graphs and Combinatorics
    70 rdf:type schema:Periodical
    71 sg:person.07531500520.10 schema:affiliation https://www.grid.ac/institutes/grid.203507.3
    72 schema:familyName Bao
    73 schema:givenName Jingjun
    74 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07531500520.10
    75 rdf:type schema:Person
    76 sg:pub.10.1007/bf01818519 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038922377
    77 https://doi.org/10.1007/bf01818519
    78 rdf:type schema:CreativeWork
    79 sg:pub.10.1007/bf02190160 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033109860
    80 https://doi.org/10.1007/bf02190160
    81 rdf:type schema:CreativeWork
    82 https://doi.org/10.1002/jgt.3190090104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018029863
    83 rdf:type schema:CreativeWork
    84 https://doi.org/10.1006/jctb.2000.2016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044779663
    85 rdf:type schema:CreativeWork
    86 https://doi.org/10.1016/0012-365x(89)90364-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033770164
    87 rdf:type schema:CreativeWork
    88 https://doi.org/10.1016/0097-3165(72)90096-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047536881
    89 rdf:type schema:CreativeWork
    90 https://doi.org/10.1016/j.ffa.2005.05.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010047784
    91 rdf:type schema:CreativeWork
    92 https://doi.org/10.1016/s0021-9800(69)80022-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002439874
    93 rdf:type schema:CreativeWork
    94 https://doi.org/10.1016/s0167-5060(08)70964-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037015269
    95 rdf:type schema:CreativeWork
    96 https://doi.org/10.1214/aoms/1177698135 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085485077
    97 rdf:type schema:CreativeWork
    98 https://doi.org/10.2307/2371217 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069897941
    99 rdf:type schema:CreativeWork
    100 https://www.grid.ac/institutes/grid.203507.3 schema:alternateName Ningbo University
    101 schema:name Department of Mathematics, Ningbo University, 315211, Ningbo, China
    102 rdf:type schema:Organization
    103 https://www.grid.ac/institutes/grid.263761.7 schema:alternateName Soochow University
    104 schema:name Department of Mathematics, Soochow University, 215006, Suzhou, China
    105 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...