Two Orthogonal 4-Cycle-Free One-Factorizations of Complete Graphs View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03

AUTHORS

Jingjun Bao, Lijun Ji

ABSTRACT

A pair of orthogonal one-factorizations F and G of the complete graph Kn is C4-free if for any two factors F∈F and G∈G the union F∪G does not include a cycle of length four. Such a concept was introduced by Blokhuis et al. (J Combin Theory B 82: 1–18, 2001), who used it to improve the upper bound for two-round rainbow colorings of Kn. In this paper, we focus on constructions for a pair of orthogonal C4-free one-factorizations of the complete graph Kn. Some infinite classes of such orthogonal decompositions are obtained. More... »

PAGES

373-392

References to SciGraph publications

  • 1981-12. Room designs and one-factorizations in AEQUATIONES MATHEMATICAE
  • 1971-06. Puintuplication of Room squares in AEQUATIONES MATHEMATICAE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00373-018-2000-y

    DOI

    http://dx.doi.org/10.1007/s00373-018-2000-y

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1111057361


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Ningbo University", 
              "id": "https://www.grid.ac/institutes/grid.203507.3", 
              "name": [
                "Department of Mathematics, Ningbo University, 315211, Ningbo, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bao", 
            "givenName": "Jingjun", 
            "id": "sg:person.07531500520.10", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07531500520.10"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Soochow University", 
              "id": "https://www.grid.ac/institutes/grid.263761.7", 
              "name": [
                "Department of Mathematics, Soochow University, 215006, Suzhou, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ji", 
            "givenName": "Lijun", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/s0021-9800(69)80022-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002439874"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ffa.2005.05.008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010047784"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/jgt.3190090104", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018029863"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02190160", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033109860", 
              "https://doi.org/10.1007/bf02190160"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02190160", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033109860", 
              "https://doi.org/10.1007/bf02190160"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0012-365x(89)90364-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033770164"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0167-5060(08)70964-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037015269"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01818519", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038922377", 
              "https://doi.org/10.1007/bf01818519"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01818519", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038922377", 
              "https://doi.org/10.1007/bf01818519"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1006/jctb.2000.2016", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044779663"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0097-3165(72)90096-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047536881"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/2371217", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069897941"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1214/aoms/1177698135", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085485077"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-03", 
        "datePublishedReg": "2019-03-01", 
        "description": "A pair of orthogonal one-factorizations F and G of the complete graph Kn is C4-free if for any two factors F\u2208F and G\u2208G the union F\u222aG does not include a cycle of length four. Such a concept was introduced by Blokhuis et al. (J Combin Theory B 82: 1\u201318, 2001), who used it to improve the upper bound for two-round rainbow colorings of Kn. In this paper, we focus on constructions for a pair of orthogonal C4-free one-factorizations of the complete graph Kn. Some infinite classes of such orthogonal decompositions are obtained.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s00373-018-2000-y", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136071", 
            "issn": [
              "0911-0119", 
              "1435-5914"
            ], 
            "name": "Graphs and Combinatorics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "35"
          }
        ], 
        "name": "Two Orthogonal 4-Cycle-Free One-Factorizations of Complete Graphs", 
        "pagination": "373-392", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "3f5c3a981e4dd09d406711b1704ea1a16c480ce4a0eb6fb660569d47de14fc08"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00373-018-2000-y"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1111057361"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00373-018-2000-y", 
          "https://app.dimensions.ai/details/publication/pub.1111057361"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T09:08", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000338_0000000338/records_47957_00000002.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs00373-018-2000-y"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00373-018-2000-y'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00373-018-2000-y'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00373-018-2000-y'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00373-018-2000-y'


     

    This table displays all metadata directly associated to this object as RDF triples.

    105 TRIPLES      21 PREDICATES      38 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00373-018-2000-y schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author Na6691562d3ec46f38b142a07eccc4dfe
    4 schema:citation sg:pub.10.1007/bf01818519
    5 sg:pub.10.1007/bf02190160
    6 https://doi.org/10.1002/jgt.3190090104
    7 https://doi.org/10.1006/jctb.2000.2016
    8 https://doi.org/10.1016/0012-365x(89)90364-6
    9 https://doi.org/10.1016/0097-3165(72)90096-9
    10 https://doi.org/10.1016/j.ffa.2005.05.008
    11 https://doi.org/10.1016/s0021-9800(69)80022-0
    12 https://doi.org/10.1016/s0167-5060(08)70964-6
    13 https://doi.org/10.1214/aoms/1177698135
    14 https://doi.org/10.2307/2371217
    15 schema:datePublished 2019-03
    16 schema:datePublishedReg 2019-03-01
    17 schema:description A pair of orthogonal one-factorizations F and G of the complete graph Kn is C4-free if for any two factors F∈F and G∈G the union F∪G does not include a cycle of length four. Such a concept was introduced by Blokhuis et al. (J Combin Theory B 82: 1–18, 2001), who used it to improve the upper bound for two-round rainbow colorings of Kn. In this paper, we focus on constructions for a pair of orthogonal C4-free one-factorizations of the complete graph Kn. Some infinite classes of such orthogonal decompositions are obtained.
    18 schema:genre research_article
    19 schema:inLanguage en
    20 schema:isAccessibleForFree false
    21 schema:isPartOf N7761aa729dee46cf8b3f632b7ac59f29
    22 Na847e44fbb0244eb834a03a145346cca
    23 sg:journal.1136071
    24 schema:name Two Orthogonal 4-Cycle-Free One-Factorizations of Complete Graphs
    25 schema:pagination 373-392
    26 schema:productId N6ee4f76b85e5438296b3e90dcb94aba3
    27 N743602f6a98b4ed69701b23c4fbd5ceb
    28 Na483bba6688d4d1fb97641ed416c809b
    29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111057361
    30 https://doi.org/10.1007/s00373-018-2000-y
    31 schema:sdDatePublished 2019-04-11T09:08
    32 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    33 schema:sdPublisher N0d70a1db662f4e9dae9f3d05504544b4
    34 schema:url https://link.springer.com/10.1007%2Fs00373-018-2000-y
    35 sgo:license sg:explorer/license/
    36 sgo:sdDataset articles
    37 rdf:type schema:ScholarlyArticle
    38 N0d70a1db662f4e9dae9f3d05504544b4 schema:name Springer Nature - SN SciGraph project
    39 rdf:type schema:Organization
    40 N10e65acadef349c08f637214b17b77bf rdf:first N2f9104d3134c48168f23fc02c2220245
    41 rdf:rest rdf:nil
    42 N2f9104d3134c48168f23fc02c2220245 schema:affiliation https://www.grid.ac/institutes/grid.263761.7
    43 schema:familyName Ji
    44 schema:givenName Lijun
    45 rdf:type schema:Person
    46 N6ee4f76b85e5438296b3e90dcb94aba3 schema:name doi
    47 schema:value 10.1007/s00373-018-2000-y
    48 rdf:type schema:PropertyValue
    49 N743602f6a98b4ed69701b23c4fbd5ceb schema:name readcube_id
    50 schema:value 3f5c3a981e4dd09d406711b1704ea1a16c480ce4a0eb6fb660569d47de14fc08
    51 rdf:type schema:PropertyValue
    52 N7761aa729dee46cf8b3f632b7ac59f29 schema:volumeNumber 35
    53 rdf:type schema:PublicationVolume
    54 Na483bba6688d4d1fb97641ed416c809b schema:name dimensions_id
    55 schema:value pub.1111057361
    56 rdf:type schema:PropertyValue
    57 Na6691562d3ec46f38b142a07eccc4dfe rdf:first sg:person.07531500520.10
    58 rdf:rest N10e65acadef349c08f637214b17b77bf
    59 Na847e44fbb0244eb834a03a145346cca schema:issueNumber 2
    60 rdf:type schema:PublicationIssue
    61 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    62 schema:name Mathematical Sciences
    63 rdf:type schema:DefinedTerm
    64 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    65 schema:name Pure Mathematics
    66 rdf:type schema:DefinedTerm
    67 sg:journal.1136071 schema:issn 0911-0119
    68 1435-5914
    69 schema:name Graphs and Combinatorics
    70 rdf:type schema:Periodical
    71 sg:person.07531500520.10 schema:affiliation https://www.grid.ac/institutes/grid.203507.3
    72 schema:familyName Bao
    73 schema:givenName Jingjun
    74 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07531500520.10
    75 rdf:type schema:Person
    76 sg:pub.10.1007/bf01818519 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038922377
    77 https://doi.org/10.1007/bf01818519
    78 rdf:type schema:CreativeWork
    79 sg:pub.10.1007/bf02190160 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033109860
    80 https://doi.org/10.1007/bf02190160
    81 rdf:type schema:CreativeWork
    82 https://doi.org/10.1002/jgt.3190090104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018029863
    83 rdf:type schema:CreativeWork
    84 https://doi.org/10.1006/jctb.2000.2016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044779663
    85 rdf:type schema:CreativeWork
    86 https://doi.org/10.1016/0012-365x(89)90364-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033770164
    87 rdf:type schema:CreativeWork
    88 https://doi.org/10.1016/0097-3165(72)90096-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047536881
    89 rdf:type schema:CreativeWork
    90 https://doi.org/10.1016/j.ffa.2005.05.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010047784
    91 rdf:type schema:CreativeWork
    92 https://doi.org/10.1016/s0021-9800(69)80022-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002439874
    93 rdf:type schema:CreativeWork
    94 https://doi.org/10.1016/s0167-5060(08)70964-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037015269
    95 rdf:type schema:CreativeWork
    96 https://doi.org/10.1214/aoms/1177698135 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085485077
    97 rdf:type schema:CreativeWork
    98 https://doi.org/10.2307/2371217 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069897941
    99 rdf:type schema:CreativeWork
    100 https://www.grid.ac/institutes/grid.203507.3 schema:alternateName Ningbo University
    101 schema:name Department of Mathematics, Ningbo University, 315211, Ningbo, China
    102 rdf:type schema:Organization
    103 https://www.grid.ac/institutes/grid.263761.7 schema:alternateName Soochow University
    104 schema:name Department of Mathematics, Soochow University, 215006, Suzhou, China
    105 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...