The Strong Convexity Spectra of Grids View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-06-01

AUTHORS

Gabriela Araujo-Pardo, César Hernández-Cruz, Juan José Montellano-Ballesteros

ABSTRACT

Let D be a connected oriented graph. A set S⊆V(D)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S \subseteq V(D)$$\end{document} is convex in D if, for every pair of vertices x,y∈S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x, y \in S$$\end{document}, the vertex set of every xy-geodesic, (xy shortest directed path) and every yx-geodesic in D is contained in S. The convexity number, con(D)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {con}(D)$$\end{document}, of a non-trivial oriented graph, D, is the maximum cardinality of a proper convex set of D. The strong convexity spectrum of the graph G, SSC(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_{SC} (G)$$\end{document}, is the set {con(D):Dis a strong orientation of G}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{\hbox {con}(D) :\ D \hbox { is a strong orientation of G} \}$$\end{document}. In this paper we prove that the problem of determining the convexity number of an oriented graph is NP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {NP}$$\end{document}-complete, even for bipartite oriented graphs of arbitrary large girth, extending previous known results for graphs. We also determine SSC(Pn□Pm)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_{SC} (P_n \Box P_m)$$\end{document}, for every pair of integers n,m≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n,m \ge 2$$\end{document}. More... »

PAGES

689-713

References to SciGraph publications

  • 2002-05. The Convexity Number of a Graph in GRAPHS AND COMBINATORICS
  • 2003-09. Some Remarks on the Convexity Number of a Graph in GRAPHS AND COMBINATORICS
  • 2011-04-22. On the Convexity Number of Graphs in GRAPHS AND COMBINATORICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00373-017-1805-4

    DOI

    http://dx.doi.org/10.1007/s00373-017-1805-4

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1085738672


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information Systems", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Universidad Nacional Aut\u00f3noma de M\u00e9xico, Campus Juriquilla, 76230, Juriquilla, Quer\u00e9taro, M\u00e9xico", 
              "id": "http://www.grid.ac/institutes/grid.9486.3", 
              "name": [
                "Universidad Nacional Aut\u00f3noma de M\u00e9xico, Campus Juriquilla, 76230, Juriquilla, Quer\u00e9taro, M\u00e9xico"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Araujo-Pardo", 
            "givenName": "Gabriela", 
            "id": "sg:person.011644517561.81", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011644517561.81"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Universidad Nacional Aut\u00f3noma de M\u00e9xico, \u00c1rea de la Investigaci\u00f3n Cient\u00edfica, Circuito Exterior, C.U., C.P. 4510, Coyoac\u00e1n, M\u00e9xico CDMX, M\u00e9xico", 
              "id": "http://www.grid.ac/institutes/grid.9486.3", 
              "name": [
                "Universidad Nacional Aut\u00f3noma de M\u00e9xico, \u00c1rea de la Investigaci\u00f3n Cient\u00edfica, Circuito Exterior, C.U., C.P. 4510, Coyoac\u00e1n, M\u00e9xico CDMX, M\u00e9xico"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hern\u00e1ndez-Cruz", 
            "givenName": "C\u00e9sar", 
            "id": "sg:person.016675053041.99", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016675053041.99"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Universidad Nacional Aut\u00f3noma de M\u00e9xico, \u00c1rea de la Investigaci\u00f3n Cient\u00edfica, Circuito Exterior, C.U., C.P. 4510, Coyoac\u00e1n, M\u00e9xico CDMX, M\u00e9xico", 
              "id": "http://www.grid.ac/institutes/grid.9486.3", 
              "name": [
                "Universidad Nacional Aut\u00f3noma de M\u00e9xico, \u00c1rea de la Investigaci\u00f3n Cient\u00edfica, Circuito Exterior, C.U., C.P. 4510, Coyoac\u00e1n, M\u00e9xico CDMX, M\u00e9xico"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Montellano-Ballesteros", 
            "givenName": "Juan Jos\u00e9", 
            "id": "sg:person.010532407641.35", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010532407641.35"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s00373-011-1049-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000408617", 
              "https://doi.org/10.1007/s00373-011-1049-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00373-002-0518-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032635331", 
              "https://doi.org/10.1007/s00373-002-0518-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s003730200014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030908552", 
              "https://doi.org/10.1007/s003730200014"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017-06-01", 
        "datePublishedReg": "2017-06-01", 
        "description": "Let D be a connected oriented graph. A set S\u2286V(D)\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$S \\subseteq V(D)$$\\end{document} is convex in D if, for every pair of vertices x,y\u2208S\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$x, y \\in S$$\\end{document}, the vertex set of every xy-geodesic, (xy shortest directed path) and every yx-geodesic in D is contained in S. The convexity number, con(D)\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\hbox {con}(D)$$\\end{document}, of a non-trivial oriented graph, D, is the maximum cardinality of a proper convex set of D. The strong convexity spectrum of the graph G, SSC(G)\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$S_{SC} (G)$$\\end{document}, is the set {con(D):Dis a strong orientation of G}\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\{\\hbox {con}(D) :\\ D \\hbox { is a strong orientation of G} \\}$$\\end{document}. In this paper we prove that the problem of determining the convexity number of an oriented graph is NP\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\mathcal {NP}$$\\end{document}-complete, even for bipartite oriented graphs of arbitrary large girth, extending previous known results for graphs. We also determine SSC(Pn\u25a1Pm)\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$S_{SC} (P_n \\Box P_m)$$\\end{document}, for every pair of integers n,m\u22652\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$n,m \\ge 2$$\\end{document}.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s00373-017-1805-4", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1136071", 
            "issn": [
              "0911-0119", 
              "1435-5914"
            ], 
            "name": "Graphs and Combinatorics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "33"
          }
        ], 
        "keywords": [
          "convexity number", 
          "strong orientation", 
          "graph", 
          "set", 
          "pairs", 
          "vertices x", 
          "vertices", 
          "number", 
          "maximum cardinality", 
          "cardinality", 
          "convex sets", 
          "spectra", 
          "graph G", 
          "orientation", 
          "paper", 
          "problem", 
          "bipartite", 
          "arbitrary large girth", 
          "large girth", 
          "girth", 
          "results", 
          "integer n", 
          "grid"
        ], 
        "name": "The Strong Convexity Spectra of Grids", 
        "pagination": "689-713", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1085738672"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00373-017-1805-4"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00373-017-1805-4", 
          "https://app.dimensions.ai/details/publication/pub.1085738672"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-12-01T06:36", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_734.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s00373-017-1805-4"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00373-017-1805-4'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00373-017-1805-4'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00373-017-1805-4'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00373-017-1805-4'


     

    This table displays all metadata directly associated to this object as RDF triples.

    108 TRIPLES      21 PREDICATES      50 URIs      39 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00373-017-1805-4 schema:about anzsrc-for:08
    2 anzsrc-for:0806
    3 schema:author N4b8645b98f4a406bab21c3702e5893e3
    4 schema:citation sg:pub.10.1007/s00373-002-0518-4
    5 sg:pub.10.1007/s00373-011-1049-7
    6 sg:pub.10.1007/s003730200014
    7 schema:datePublished 2017-06-01
    8 schema:datePublishedReg 2017-06-01
    9 schema:description Let D be a connected oriented graph. A set S⊆V(D)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S \subseteq V(D)$$\end{document} is convex in D if, for every pair of vertices x,y∈S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x, y \in S$$\end{document}, the vertex set of every xy-geodesic, (xy shortest directed path) and every yx-geodesic in D is contained in S. The convexity number, con(D)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {con}(D)$$\end{document}, of a non-trivial oriented graph, D, is the maximum cardinality of a proper convex set of D. The strong convexity spectrum of the graph G, SSC(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_{SC} (G)$$\end{document}, is the set {con(D):Dis a strong orientation of G}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{\hbox {con}(D) :\ D \hbox { is a strong orientation of G} \}$$\end{document}. In this paper we prove that the problem of determining the convexity number of an oriented graph is NP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {NP}$$\end{document}-complete, even for bipartite oriented graphs of arbitrary large girth, extending previous known results for graphs. We also determine SSC(Pn□Pm)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_{SC} (P_n \Box P_m)$$\end{document}, for every pair of integers n,m≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n,m \ge 2$$\end{document}.
    10 schema:genre article
    11 schema:isAccessibleForFree true
    12 schema:isPartOf N7760969c072e4724abf0f5a9fd9bb215
    13 Na96ca13ef8ba40a2840aa478b20790f3
    14 sg:journal.1136071
    15 schema:keywords arbitrary large girth
    16 bipartite
    17 cardinality
    18 convex sets
    19 convexity number
    20 girth
    21 graph
    22 graph G
    23 grid
    24 integer n
    25 large girth
    26 maximum cardinality
    27 number
    28 orientation
    29 pairs
    30 paper
    31 problem
    32 results
    33 set
    34 spectra
    35 strong orientation
    36 vertices
    37 vertices x
    38 schema:name The Strong Convexity Spectra of Grids
    39 schema:pagination 689-713
    40 schema:productId N1b6630fd03a549cdbed098b4f1a2cdb7
    41 N4353e43bf16f4ff489752918033818eb
    42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085738672
    43 https://doi.org/10.1007/s00373-017-1805-4
    44 schema:sdDatePublished 2022-12-01T06:36
    45 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    46 schema:sdPublisher Ne0b6527e053a4134a880085c0caa5264
    47 schema:url https://doi.org/10.1007/s00373-017-1805-4
    48 sgo:license sg:explorer/license/
    49 sgo:sdDataset articles
    50 rdf:type schema:ScholarlyArticle
    51 N1b6630fd03a549cdbed098b4f1a2cdb7 schema:name dimensions_id
    52 schema:value pub.1085738672
    53 rdf:type schema:PropertyValue
    54 N4353e43bf16f4ff489752918033818eb schema:name doi
    55 schema:value 10.1007/s00373-017-1805-4
    56 rdf:type schema:PropertyValue
    57 N4b8645b98f4a406bab21c3702e5893e3 rdf:first sg:person.011644517561.81
    58 rdf:rest Ne70d26ed4ba6464592d0589c2e9107aa
    59 N7760969c072e4724abf0f5a9fd9bb215 schema:issueNumber 4
    60 rdf:type schema:PublicationIssue
    61 Na96ca13ef8ba40a2840aa478b20790f3 schema:volumeNumber 33
    62 rdf:type schema:PublicationVolume
    63 Nd5ceded8520147268cf547671a3baf55 rdf:first sg:person.010532407641.35
    64 rdf:rest rdf:nil
    65 Ne0b6527e053a4134a880085c0caa5264 schema:name Springer Nature - SN SciGraph project
    66 rdf:type schema:Organization
    67 Ne70d26ed4ba6464592d0589c2e9107aa rdf:first sg:person.016675053041.99
    68 rdf:rest Nd5ceded8520147268cf547671a3baf55
    69 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    70 schema:name Information and Computing Sciences
    71 rdf:type schema:DefinedTerm
    72 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
    73 schema:name Information Systems
    74 rdf:type schema:DefinedTerm
    75 sg:journal.1136071 schema:issn 0911-0119
    76 1435-5914
    77 schema:name Graphs and Combinatorics
    78 schema:publisher Springer Nature
    79 rdf:type schema:Periodical
    80 sg:person.010532407641.35 schema:affiliation grid-institutes:grid.9486.3
    81 schema:familyName Montellano-Ballesteros
    82 schema:givenName Juan José
    83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010532407641.35
    84 rdf:type schema:Person
    85 sg:person.011644517561.81 schema:affiliation grid-institutes:grid.9486.3
    86 schema:familyName Araujo-Pardo
    87 schema:givenName Gabriela
    88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011644517561.81
    89 rdf:type schema:Person
    90 sg:person.016675053041.99 schema:affiliation grid-institutes:grid.9486.3
    91 schema:familyName Hernández-Cruz
    92 schema:givenName César
    93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016675053041.99
    94 rdf:type schema:Person
    95 sg:pub.10.1007/s00373-002-0518-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032635331
    96 https://doi.org/10.1007/s00373-002-0518-4
    97 rdf:type schema:CreativeWork
    98 sg:pub.10.1007/s00373-011-1049-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000408617
    99 https://doi.org/10.1007/s00373-011-1049-7
    100 rdf:type schema:CreativeWork
    101 sg:pub.10.1007/s003730200014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030908552
    102 https://doi.org/10.1007/s003730200014
    103 rdf:type schema:CreativeWork
    104 grid-institutes:grid.9486.3 schema:alternateName Universidad Nacional Autónoma de México, Campus Juriquilla, 76230, Juriquilla, Querétaro, México
    105 Universidad Nacional Autónoma de México, Área de la Investigación Científica, Circuito Exterior, C.U., C.P. 4510, Coyoacán, México CDMX, México
    106 schema:name Universidad Nacional Autónoma de México, Campus Juriquilla, 76230, Juriquilla, Querétaro, México
    107 Universidad Nacional Autónoma de México, Área de la Investigación Científica, Circuito Exterior, C.U., C.P. 4510, Coyoacán, México CDMX, México
    108 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...