Strong edge-colorings for k-degenerate graphs View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2015-09

AUTHORS

Gexin Yu

ABSTRACT

We prove that the strong chromatic index for each k-degenerate graph with maximum degree Δ is at most (4k-2)Δ-k(2k-1)+1. This confirms a conjecture of Chang and Narayanan.

PAGES

1815-1818

Journal

TITLE

Graphs and Combinatorics

ISSUE

5

VOLUME

31

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00373-014-1478-1

DOI

http://dx.doi.org/10.1007/s00373-014-1478-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1043330812


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "author": [
      {
        "affiliation": {
          "alternateName": "College of William & Mary", 
          "id": "https://www.grid.ac/institutes/grid.264889.9", 
          "name": [
            "Department of Mathematics, College of William and Mary, 23185, Williamsburg, VA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yu", 
        "givenName": "Gexin", 
        "id": "sg:person.012242267235.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012242267235.61"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1006/jctb.1997.1724", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008944068"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0012-365x(92)90678-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012603891"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.disc.2006.03.053", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027702801"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0012-365x(90)90144-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040612671"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jgt.3190170204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041029219"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jgt.21646", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042289883"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-09", 
    "datePublishedReg": "2015-09-01", 
    "description": "We prove that the strong chromatic index for each k-degenerate graph with maximum degree \u0394 is at most (4k-2)\u0394-k(2k-1)+1. This confirms a conjecture of Chang and Narayanan.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00373-014-1478-1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136071", 
        "issn": [
          "0911-0119", 
          "1435-5914"
        ], 
        "name": "Graphs and Combinatorics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "31"
      }
    ], 
    "name": "Strong edge-colorings for k-degenerate graphs", 
    "pagination": "1815-1818", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "ce66d32a05f081a214ecb2c080143b51d586e298176ca94a9d6ac260dfc37993"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00373-014-1478-1"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1043330812"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00373-014-1478-1", 
      "https://app.dimensions.ai/details/publication/pub.1043330812"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T23:19", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8693_00000490.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s00373-014-1478-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00373-014-1478-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00373-014-1478-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00373-014-1478-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00373-014-1478-1'


 

This table displays all metadata directly associated to this object as RDF triples.

71 TRIPLES      20 PREDICATES      31 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00373-014-1478-1 schema:author Nbd2498a40d8c4150b3cae24d64fcb058
2 schema:citation https://doi.org/10.1002/jgt.21646
3 https://doi.org/10.1002/jgt.3190170204
4 https://doi.org/10.1006/jctb.1997.1724
5 https://doi.org/10.1016/0012-365x(90)90144-7
6 https://doi.org/10.1016/0012-365x(92)90678-9
7 https://doi.org/10.1016/j.disc.2006.03.053
8 schema:datePublished 2015-09
9 schema:datePublishedReg 2015-09-01
10 schema:description We prove that the strong chromatic index for each k-degenerate graph with maximum degree Δ is at most (4k-2)Δ-k(2k-1)+1. This confirms a conjecture of Chang and Narayanan.
11 schema:genre research_article
12 schema:inLanguage en
13 schema:isAccessibleForFree false
14 schema:isPartOf N547d94d5a83a46f78b35722f4366a4df
15 Nd3087df210194d02aa9619a6faee10c4
16 sg:journal.1136071
17 schema:name Strong edge-colorings for k-degenerate graphs
18 schema:pagination 1815-1818
19 schema:productId Nb2b40c0e04b74c7195d2ae84469e3758
20 Ndfe2830d4734479fbad4948cf5255502
21 Nffc4cdb5aaa54c58b549cd29b848a62d
22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043330812
23 https://doi.org/10.1007/s00373-014-1478-1
24 schema:sdDatePublished 2019-04-10T23:19
25 schema:sdLicense https://scigraph.springernature.com/explorer/license/
26 schema:sdPublisher N18e396bccb4447fcb3e76d8af0fc57d8
27 schema:url http://link.springer.com/10.1007/s00373-014-1478-1
28 sgo:license sg:explorer/license/
29 sgo:sdDataset articles
30 rdf:type schema:ScholarlyArticle
31 N18e396bccb4447fcb3e76d8af0fc57d8 schema:name Springer Nature - SN SciGraph project
32 rdf:type schema:Organization
33 N547d94d5a83a46f78b35722f4366a4df schema:volumeNumber 31
34 rdf:type schema:PublicationVolume
35 Nb2b40c0e04b74c7195d2ae84469e3758 schema:name readcube_id
36 schema:value ce66d32a05f081a214ecb2c080143b51d586e298176ca94a9d6ac260dfc37993
37 rdf:type schema:PropertyValue
38 Nbd2498a40d8c4150b3cae24d64fcb058 rdf:first sg:person.012242267235.61
39 rdf:rest rdf:nil
40 Nd3087df210194d02aa9619a6faee10c4 schema:issueNumber 5
41 rdf:type schema:PublicationIssue
42 Ndfe2830d4734479fbad4948cf5255502 schema:name dimensions_id
43 schema:value pub.1043330812
44 rdf:type schema:PropertyValue
45 Nffc4cdb5aaa54c58b549cd29b848a62d schema:name doi
46 schema:value 10.1007/s00373-014-1478-1
47 rdf:type schema:PropertyValue
48 sg:journal.1136071 schema:issn 0911-0119
49 1435-5914
50 schema:name Graphs and Combinatorics
51 rdf:type schema:Periodical
52 sg:person.012242267235.61 schema:affiliation https://www.grid.ac/institutes/grid.264889.9
53 schema:familyName Yu
54 schema:givenName Gexin
55 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012242267235.61
56 rdf:type schema:Person
57 https://doi.org/10.1002/jgt.21646 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042289883
58 rdf:type schema:CreativeWork
59 https://doi.org/10.1002/jgt.3190170204 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041029219
60 rdf:type schema:CreativeWork
61 https://doi.org/10.1006/jctb.1997.1724 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008944068
62 rdf:type schema:CreativeWork
63 https://doi.org/10.1016/0012-365x(90)90144-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040612671
64 rdf:type schema:CreativeWork
65 https://doi.org/10.1016/0012-365x(92)90678-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012603891
66 rdf:type schema:CreativeWork
67 https://doi.org/10.1016/j.disc.2006.03.053 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027702801
68 rdf:type schema:CreativeWork
69 https://www.grid.ac/institutes/grid.264889.9 schema:alternateName College of William & Mary
70 schema:name Department of Mathematics, College of William and Mary, 23185, Williamsburg, VA, USA
71 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...