Multiple reconstruction and dynamic modeling of 3D digital objects using a morphing approach View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2015-05

AUTHORS

Valentin Leonardi, Vincent Vidal, Marc Daniel, Jean-Luc Mari

ABSTRACT

Organ segmentation and motion simulation of organs can be useful for many clinical purposes such as organ study, diagnostic aid, therapy planning or even tumor destruction. In this paper we present a full workflow starting from a CT-Scan resulting in kidney motion simulation and tumor tracking. Our method is divided into three major steps: kidney segmentation, surface reconstruction and animation. The segmentation is based on a semi-automatic region-growing approach that is refined to improve its results. The reconstruction is performed using the Poisson surface reconstruction and gives a manifold three-dimensional (3D) model of the kidney. Finally, the animation is accomplished using an automatic mesh morphing among the models previously obtained. Thus, the results are purely geometric because they are 3D animated models. Moreover, our method requires only a basic user interaction and is fast enough to be used in a medical environment, which satisfies our constraints. Finally, this method can be easily adapted to magnetic resonance imaging acquisition because only the segmentation part would require minor modifications. More... »

PAGES

557-574

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00371-014-0978-6

DOI

http://dx.doi.org/10.1007/s00371-014-0978-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1017532872


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Laboratoire des Sciences de l'Information et des Syst\u00e8mes", 
          "id": "https://www.grid.ac/institutes/grid.462878.7", 
          "name": [
            "LSIS, UMR CNRS 7296, Aix-Marseille Universit\u00e9, Marseille, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Leonardi", 
        "givenName": "Valentin", 
        "id": "sg:person.011263374404.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011263374404.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "LIIE, EA 4264, CERIMED, Aix-Marseille Universit\u00e9, Marseille, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vidal", 
        "givenName": "Vincent", 
        "id": "sg:person.012656335404.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012656335404.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratoire des Sciences de l'Information et des Syst\u00e8mes", 
          "id": "https://www.grid.ac/institutes/grid.462878.7", 
          "name": [
            "LSIS, UMR CNRS 7296, Aix-Marseille Universit\u00e9, Marseille, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Daniel", 
        "givenName": "Marc", 
        "id": "sg:person.013655550630.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013655550630.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratoire des Sciences de l'Information et des Syst\u00e8mes", 
          "id": "https://www.grid.ac/institutes/grid.462878.7", 
          "name": [
            "LSIS, UMR CNRS 7296, Aix-Marseille Universit\u00e9, Marseille, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mari", 
        "givenName": "Jean-Luc", 
        "id": "sg:person.010376126345.96", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010376126345.96"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s003710050201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000027883", 
          "https://doi.org/10.1007/s003710050201"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-017-1689-5_10", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002286595", 
          "https://doi.org/10.1007/978-94-017-1689-5_10"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0734-189x(88)90124-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002638110"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/311535.311586", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002826130"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0020-7101(96)01199-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003254048"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-63046-5_10", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006758225", 
          "https://doi.org/10.1007/3-540-63046-5_10"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-5347(05)65371-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007091177"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-5347(05)65371-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007091177"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-5347(05)65371-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007091177"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-5347(05)65371-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007091177"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-5347(05)65371-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007091177"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00371-005-0321-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009577289", 
          "https://doi.org/10.1007/s00371-005-0321-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00371-005-0321-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009577289", 
          "https://doi.org/10.1007/s00371-005-0321-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/280814.280828", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010735603"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-28557-8_26", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011506582", 
          "https://doi.org/10.1007/978-3-642-28557-8_26"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11566489_46", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013702019", 
          "https://doi.org/10.1007/11566489_46"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11566489_46", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013702019", 
          "https://doi.org/10.1007/11566489_46"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1361-8415(96)80009-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018460879"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-70521-5_10", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018534916", 
          "https://doi.org/10.1007/978-3-540-70521-5_10"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ics.2005.03.285", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019520409"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ics.2005.03.285", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019520409"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0734-189x(88)80028-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019743089"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/02841860802258760", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023369514"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4236/jbise.2009.21001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024125299"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10462-012-9329-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027045032", 
          "https://doi.org/10.1007/s10462-012-9329-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1118/1.2161409", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027700288"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.media.2009.07.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027823706"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/12.428073", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027971851"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0360-3016(02)04597-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030485739"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0360-3016(02)04597-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030485739"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/12.216418", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034188836"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-75759-7_10", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035944752", 
          "https://doi.org/10.1007/978-3-540-75759-7_10"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-75759-7_10", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035944752", 
          "https://doi.org/10.1007/978-3-540-75759-7_10"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/cviu.1997.0595", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039633257"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-79982-5_39", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039825055", 
          "https://doi.org/10.1007/978-3-540-79982-5_39"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-23629-7_76", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039829031", 
          "https://doi.org/10.1007/978-3-642-23629-7_76"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-23629-7_76", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039829031", 
          "https://doi.org/10.1007/978-3-642-23629-7_76"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1008105404510", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040351431", 
          "https://doi.org/10.1023/a:1008105404510"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s003710050126", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041407367", 
          "https://doi.org/10.1007/s003710050126"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0360-3016(00)00625-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041523257"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0056231", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042419895", 
          "https://doi.org/10.1007/bfb0056231"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/344779.344859", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044036185"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/b978-0-12-227741-2.50005-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045673342"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/12.844098", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046381455"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/1467-8659.00479", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046688566"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0720-048x(91)90125-f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048273629"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/133994.134007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048671201"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2044.2008.05562.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049360387"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/108360.108363", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049399876"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiology.218.2.r01fe44586", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051495628"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/2945.764872", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061146301"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/38.824544", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061164247"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/42.126911", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061170005"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/42.310875", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061170239"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/42.511747", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061170429"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/42.563663", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061170514"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/42.650883", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061170607"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/42.668699", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061170626"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/42.796284", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061170839"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/42.802752", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061170842"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/42.906424", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061171006"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/42.996338", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061171176"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/titb.2003.813795", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061656262"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/titb.2005.855561", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061656407"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/142920.134007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063155524"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiographics.22.2.g02mr26437", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1075015054"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iembs.2009.5333869", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077993910"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.1994.323913", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093431087"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/pccga.1999.803363", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093605793"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icip.1998.999022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095261438"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/ca.1998.681909", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095727764"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-05", 
    "datePublishedReg": "2015-05-01", 
    "description": "Organ segmentation and motion simulation of organs can be useful for many clinical purposes such as organ study, diagnostic aid, therapy planning or even tumor destruction. In this paper we present a full workflow starting from a CT-Scan resulting in kidney motion simulation and tumor tracking. Our method is divided into three major steps: kidney segmentation, surface reconstruction and animation. The segmentation is based on a semi-automatic region-growing approach that is refined to improve its results. The reconstruction is performed using the Poisson surface reconstruction and gives a manifold three-dimensional (3D) model of the kidney. Finally, the animation is accomplished using an automatic mesh morphing among the models previously obtained. Thus, the results are purely geometric because they are 3D animated models. Moreover, our method requires only a basic user interaction and is fast enough to be used in a medical environment, which satisfies our constraints. Finally, this method can be easily adapted to magnetic resonance imaging acquisition because only the segmentation part would require minor modifications.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00371-014-0978-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1046897", 
        "issn": [
          "0178-2789", 
          "1432-2315"
        ], 
        "name": "The Visual Computer", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "31"
      }
    ], 
    "name": "Multiple reconstruction and dynamic modeling of 3D digital objects using a morphing approach", 
    "pagination": "557-574", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "5388a199790d5b1de7bc68a9b9068e72c9e7e4fea93a1e70a49b133b48ee860c"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00371-014-0978-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1017532872"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00371-014-0978-6", 
      "https://app.dimensions.ai/details/publication/pub.1017532872"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T23:18", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8693_00000487.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s00371-014-0978-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00371-014-0978-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00371-014-0978-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00371-014-0978-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00371-014-0978-6'


 

This table displays all metadata directly associated to this object as RDF triples.

281 TRIPLES      21 PREDICATES      88 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00371-014-0978-6 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N8e983dc7e4ef4252842360b1bce404df
4 schema:citation sg:pub.10.1007/11566489_46
5 sg:pub.10.1007/3-540-63046-5_10
6 sg:pub.10.1007/978-3-540-70521-5_10
7 sg:pub.10.1007/978-3-540-75759-7_10
8 sg:pub.10.1007/978-3-540-79982-5_39
9 sg:pub.10.1007/978-3-642-23629-7_76
10 sg:pub.10.1007/978-3-642-28557-8_26
11 sg:pub.10.1007/978-94-017-1689-5_10
12 sg:pub.10.1007/bfb0056231
13 sg:pub.10.1007/s00371-005-0321-3
14 sg:pub.10.1007/s003710050126
15 sg:pub.10.1007/s003710050201
16 sg:pub.10.1007/s10462-012-9329-z
17 sg:pub.10.1023/a:1008105404510
18 https://doi.org/10.1006/cviu.1997.0595
19 https://doi.org/10.1016/0020-7101(96)01199-3
20 https://doi.org/10.1016/0720-048x(91)90125-f
21 https://doi.org/10.1016/0734-189x(88)90124-7
22 https://doi.org/10.1016/b978-0-12-227741-2.50005-0
23 https://doi.org/10.1016/j.ics.2005.03.285
24 https://doi.org/10.1016/j.media.2009.07.009
25 https://doi.org/10.1016/s0022-5347(05)65371-2
26 https://doi.org/10.1016/s0360-3016(00)00625-8
27 https://doi.org/10.1016/s0360-3016(02)04597-2
28 https://doi.org/10.1016/s0734-189x(88)80028-8
29 https://doi.org/10.1016/s1361-8415(96)80009-0
30 https://doi.org/10.1080/02841860802258760
31 https://doi.org/10.1109/2945.764872
32 https://doi.org/10.1109/38.824544
33 https://doi.org/10.1109/42.126911
34 https://doi.org/10.1109/42.310875
35 https://doi.org/10.1109/42.511747
36 https://doi.org/10.1109/42.563663
37 https://doi.org/10.1109/42.650883
38 https://doi.org/10.1109/42.668699
39 https://doi.org/10.1109/42.796284
40 https://doi.org/10.1109/42.802752
41 https://doi.org/10.1109/42.906424
42 https://doi.org/10.1109/42.996338
43 https://doi.org/10.1109/ca.1998.681909
44 https://doi.org/10.1109/cvpr.1994.323913
45 https://doi.org/10.1109/icip.1998.999022
46 https://doi.org/10.1109/iembs.2009.5333869
47 https://doi.org/10.1109/pccga.1999.803363
48 https://doi.org/10.1109/titb.2003.813795
49 https://doi.org/10.1109/titb.2005.855561
50 https://doi.org/10.1111/1467-8659.00479
51 https://doi.org/10.1111/j.1365-2044.2008.05562.x
52 https://doi.org/10.1117/12.216418
53 https://doi.org/10.1117/12.428073
54 https://doi.org/10.1117/12.844098
55 https://doi.org/10.1118/1.2161409
56 https://doi.org/10.1145/108360.108363
57 https://doi.org/10.1145/133994.134007
58 https://doi.org/10.1145/142920.134007
59 https://doi.org/10.1145/280814.280828
60 https://doi.org/10.1145/311535.311586
61 https://doi.org/10.1145/344779.344859
62 https://doi.org/10.1148/radiographics.22.2.g02mr26437
63 https://doi.org/10.1148/radiology.218.2.r01fe44586
64 https://doi.org/10.4236/jbise.2009.21001
65 schema:datePublished 2015-05
66 schema:datePublishedReg 2015-05-01
67 schema:description Organ segmentation and motion simulation of organs can be useful for many clinical purposes such as organ study, diagnostic aid, therapy planning or even tumor destruction. In this paper we present a full workflow starting from a CT-Scan resulting in kidney motion simulation and tumor tracking. Our method is divided into three major steps: kidney segmentation, surface reconstruction and animation. The segmentation is based on a semi-automatic region-growing approach that is refined to improve its results. The reconstruction is performed using the Poisson surface reconstruction and gives a manifold three-dimensional (3D) model of the kidney. Finally, the animation is accomplished using an automatic mesh morphing among the models previously obtained. Thus, the results are purely geometric because they are 3D animated models. Moreover, our method requires only a basic user interaction and is fast enough to be used in a medical environment, which satisfies our constraints. Finally, this method can be easily adapted to magnetic resonance imaging acquisition because only the segmentation part would require minor modifications.
68 schema:genre research_article
69 schema:inLanguage en
70 schema:isAccessibleForFree false
71 schema:isPartOf N6da3cae0dfe94a37bf3fd9524e8c7ec4
72 N86ce5e53912844c59c6c5e8d673858fb
73 sg:journal.1046897
74 schema:name Multiple reconstruction and dynamic modeling of 3D digital objects using a morphing approach
75 schema:pagination 557-574
76 schema:productId N473ca9e4caaa4509acfb75105962cf77
77 N8a6f4fce7af040ab8d11d3a8db401278
78 Nc88a02fb233e4c7ea2d33e25d5bec14b
79 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017532872
80 https://doi.org/10.1007/s00371-014-0978-6
81 schema:sdDatePublished 2019-04-10T23:18
82 schema:sdLicense https://scigraph.springernature.com/explorer/license/
83 schema:sdPublisher N55f903ba293a4ada836248871d6041ef
84 schema:url http://link.springer.com/10.1007/s00371-014-0978-6
85 sgo:license sg:explorer/license/
86 sgo:sdDataset articles
87 rdf:type schema:ScholarlyArticle
88 N1ad77a357f25477f976f6913d19cfe21 rdf:first sg:person.010376126345.96
89 rdf:rest rdf:nil
90 N4673791edcf54df6a3865b107b6053bb rdf:first sg:person.012656335404.16
91 rdf:rest Ndc8326032e174cf2aa4d5ea7e944b5ad
92 N473ca9e4caaa4509acfb75105962cf77 schema:name readcube_id
93 schema:value 5388a199790d5b1de7bc68a9b9068e72c9e7e4fea93a1e70a49b133b48ee860c
94 rdf:type schema:PropertyValue
95 N55f903ba293a4ada836248871d6041ef schema:name Springer Nature - SN SciGraph project
96 rdf:type schema:Organization
97 N623d02dc11014132825b18796cba47b3 schema:name LIIE, EA 4264, CERIMED, Aix-Marseille Université, Marseille, France
98 rdf:type schema:Organization
99 N6da3cae0dfe94a37bf3fd9524e8c7ec4 schema:volumeNumber 31
100 rdf:type schema:PublicationVolume
101 N86ce5e53912844c59c6c5e8d673858fb schema:issueNumber 5
102 rdf:type schema:PublicationIssue
103 N8a6f4fce7af040ab8d11d3a8db401278 schema:name dimensions_id
104 schema:value pub.1017532872
105 rdf:type schema:PropertyValue
106 N8e983dc7e4ef4252842360b1bce404df rdf:first sg:person.011263374404.53
107 rdf:rest N4673791edcf54df6a3865b107b6053bb
108 Nc88a02fb233e4c7ea2d33e25d5bec14b schema:name doi
109 schema:value 10.1007/s00371-014-0978-6
110 rdf:type schema:PropertyValue
111 Ndc8326032e174cf2aa4d5ea7e944b5ad rdf:first sg:person.013655550630.49
112 rdf:rest N1ad77a357f25477f976f6913d19cfe21
113 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
114 schema:name Information and Computing Sciences
115 rdf:type schema:DefinedTerm
116 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
117 schema:name Artificial Intelligence and Image Processing
118 rdf:type schema:DefinedTerm
119 sg:journal.1046897 schema:issn 0178-2789
120 1432-2315
121 schema:name The Visual Computer
122 rdf:type schema:Periodical
123 sg:person.010376126345.96 schema:affiliation https://www.grid.ac/institutes/grid.462878.7
124 schema:familyName Mari
125 schema:givenName Jean-Luc
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010376126345.96
127 rdf:type schema:Person
128 sg:person.011263374404.53 schema:affiliation https://www.grid.ac/institutes/grid.462878.7
129 schema:familyName Leonardi
130 schema:givenName Valentin
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011263374404.53
132 rdf:type schema:Person
133 sg:person.012656335404.16 schema:affiliation N623d02dc11014132825b18796cba47b3
134 schema:familyName Vidal
135 schema:givenName Vincent
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012656335404.16
137 rdf:type schema:Person
138 sg:person.013655550630.49 schema:affiliation https://www.grid.ac/institutes/grid.462878.7
139 schema:familyName Daniel
140 schema:givenName Marc
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013655550630.49
142 rdf:type schema:Person
143 sg:pub.10.1007/11566489_46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013702019
144 https://doi.org/10.1007/11566489_46
145 rdf:type schema:CreativeWork
146 sg:pub.10.1007/3-540-63046-5_10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006758225
147 https://doi.org/10.1007/3-540-63046-5_10
148 rdf:type schema:CreativeWork
149 sg:pub.10.1007/978-3-540-70521-5_10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018534916
150 https://doi.org/10.1007/978-3-540-70521-5_10
151 rdf:type schema:CreativeWork
152 sg:pub.10.1007/978-3-540-75759-7_10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035944752
153 https://doi.org/10.1007/978-3-540-75759-7_10
154 rdf:type schema:CreativeWork
155 sg:pub.10.1007/978-3-540-79982-5_39 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039825055
156 https://doi.org/10.1007/978-3-540-79982-5_39
157 rdf:type schema:CreativeWork
158 sg:pub.10.1007/978-3-642-23629-7_76 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039829031
159 https://doi.org/10.1007/978-3-642-23629-7_76
160 rdf:type schema:CreativeWork
161 sg:pub.10.1007/978-3-642-28557-8_26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011506582
162 https://doi.org/10.1007/978-3-642-28557-8_26
163 rdf:type schema:CreativeWork
164 sg:pub.10.1007/978-94-017-1689-5_10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002286595
165 https://doi.org/10.1007/978-94-017-1689-5_10
166 rdf:type schema:CreativeWork
167 sg:pub.10.1007/bfb0056231 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042419895
168 https://doi.org/10.1007/bfb0056231
169 rdf:type schema:CreativeWork
170 sg:pub.10.1007/s00371-005-0321-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009577289
171 https://doi.org/10.1007/s00371-005-0321-3
172 rdf:type schema:CreativeWork
173 sg:pub.10.1007/s003710050126 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041407367
174 https://doi.org/10.1007/s003710050126
175 rdf:type schema:CreativeWork
176 sg:pub.10.1007/s003710050201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000027883
177 https://doi.org/10.1007/s003710050201
178 rdf:type schema:CreativeWork
179 sg:pub.10.1007/s10462-012-9329-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1027045032
180 https://doi.org/10.1007/s10462-012-9329-z
181 rdf:type schema:CreativeWork
182 sg:pub.10.1023/a:1008105404510 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040351431
183 https://doi.org/10.1023/a:1008105404510
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1006/cviu.1997.0595 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039633257
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1016/0020-7101(96)01199-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003254048
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1016/0720-048x(91)90125-f schema:sameAs https://app.dimensions.ai/details/publication/pub.1048273629
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1016/0734-189x(88)90124-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002638110
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1016/b978-0-12-227741-2.50005-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045673342
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1016/j.ics.2005.03.285 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019520409
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1016/j.media.2009.07.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027823706
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1016/s0022-5347(05)65371-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007091177
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1016/s0360-3016(00)00625-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041523257
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1016/s0360-3016(02)04597-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030485739
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1016/s0734-189x(88)80028-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019743089
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1016/s1361-8415(96)80009-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018460879
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1080/02841860802258760 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023369514
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1109/2945.764872 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061146301
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1109/38.824544 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061164247
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1109/42.126911 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061170005
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1109/42.310875 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061170239
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1109/42.511747 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061170429
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1109/42.563663 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061170514
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1109/42.650883 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061170607
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1109/42.668699 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061170626
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1109/42.796284 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061170839
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1109/42.802752 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061170842
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1109/42.906424 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061171006
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1109/42.996338 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061171176
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1109/ca.1998.681909 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095727764
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1109/cvpr.1994.323913 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093431087
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1109/icip.1998.999022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095261438
240 rdf:type schema:CreativeWork
241 https://doi.org/10.1109/iembs.2009.5333869 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077993910
242 rdf:type schema:CreativeWork
243 https://doi.org/10.1109/pccga.1999.803363 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093605793
244 rdf:type schema:CreativeWork
245 https://doi.org/10.1109/titb.2003.813795 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061656262
246 rdf:type schema:CreativeWork
247 https://doi.org/10.1109/titb.2005.855561 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061656407
248 rdf:type schema:CreativeWork
249 https://doi.org/10.1111/1467-8659.00479 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046688566
250 rdf:type schema:CreativeWork
251 https://doi.org/10.1111/j.1365-2044.2008.05562.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1049360387
252 rdf:type schema:CreativeWork
253 https://doi.org/10.1117/12.216418 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034188836
254 rdf:type schema:CreativeWork
255 https://doi.org/10.1117/12.428073 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027971851
256 rdf:type schema:CreativeWork
257 https://doi.org/10.1117/12.844098 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046381455
258 rdf:type schema:CreativeWork
259 https://doi.org/10.1118/1.2161409 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027700288
260 rdf:type schema:CreativeWork
261 https://doi.org/10.1145/108360.108363 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049399876
262 rdf:type schema:CreativeWork
263 https://doi.org/10.1145/133994.134007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048671201
264 rdf:type schema:CreativeWork
265 https://doi.org/10.1145/142920.134007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063155524
266 rdf:type schema:CreativeWork
267 https://doi.org/10.1145/280814.280828 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010735603
268 rdf:type schema:CreativeWork
269 https://doi.org/10.1145/311535.311586 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002826130
270 rdf:type schema:CreativeWork
271 https://doi.org/10.1145/344779.344859 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044036185
272 rdf:type schema:CreativeWork
273 https://doi.org/10.1148/radiographics.22.2.g02mr26437 schema:sameAs https://app.dimensions.ai/details/publication/pub.1075015054
274 rdf:type schema:CreativeWork
275 https://doi.org/10.1148/radiology.218.2.r01fe44586 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051495628
276 rdf:type schema:CreativeWork
277 https://doi.org/10.4236/jbise.2009.21001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024125299
278 rdf:type schema:CreativeWork
279 https://www.grid.ac/institutes/grid.462878.7 schema:alternateName Laboratoire des Sciences de l'Information et des Systèmes
280 schema:name LSIS, UMR CNRS 7296, Aix-Marseille Université, Marseille, France
281 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...