Partial matching of real textured 3D objects using color cubic higher-order local auto-correlation features View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2010-10

AUTHORS

Asako Kanezaki, Tatsuya Harada, Yasuo Kuniyoshi

ABSTRACT

In recent years, the need for retrieving real 3D objects has grown significantly. However, various important considerations must be taken into account to solve the real 3D object retrieval problem. Three-dimensional models obtained without the use of special equipment such as engineered environments or multi-camera systems are often incomplete. Therefore, the ability to perform partial matching is essential. Moreover, the time required for the matching process must be relatively short, since the operation will need to be performed repeatedly to deal with the dynamic nature of day-to-day human environments. Furthermore, real models often include rich texture information, which can compensate for the limited shape information. Thus, the descriptors of the 3D models have to consider both shape and texture patterns. In this paper, we present new 3D shape features which take into account the object’s texture. The additive property of these features enables efficient partial matching between query data and 3D models in a database. In the experiments, we compare these features with conventional features, namely Spin-Image, Textured Spin-Image, and CHLAC features using a dataset of real textured objects. Furthermore, we demonstrate the retrieval performance of these features on a real color 3D scene. More... »

PAGES

1269-1281

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00371-010-0521-3

DOI

http://dx.doi.org/10.1007/s00371-010-0521-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1023706934


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Tokyo", 
          "id": "https://www.grid.ac/institutes/grid.26999.3d", 
          "name": [
            "The University of Tokyo, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kanezaki", 
        "givenName": "Asako", 
        "id": "sg:person.012216327027.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012216327027.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Tokyo", 
          "id": "https://www.grid.ac/institutes/grid.26999.3d", 
          "name": [
            "The University of Tokyo, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Harada", 
        "givenName": "Tatsuya", 
        "id": "sg:person.013240357031.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013240357031.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Tokyo", 
          "id": "https://www.grid.ac/institutes/grid.26999.3d", 
          "name": [
            "The University of Tokyo, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kuniyoshi", 
        "givenName": "Yasuo", 
        "id": "sg:person.013372311431.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013372311431.62"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1145/1118890.1118893", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006084682"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cviu.2004.03.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014516783"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0262-8856(98)00074-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016519053"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/gmip.1998.0474", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027050189"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11263-006-6993-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033098492", 
          "https://doi.org/10.1007/s11263-006-6993-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/964965.808600", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038840604"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cad.2006.07.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040272995"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00371-006-0374-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050809326", 
          "https://doi.org/10.1007/s00371-006-0374-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/34.765655", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061156951"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icip.2007.4379206", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094297004"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icpr.2004.1333879", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095190160"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icme.2002.1035812", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095342398"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.1996.517172", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095400117"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/smi.2008.4547955", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095641272"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-10", 
    "datePublishedReg": "2010-10-01", 
    "description": "In recent years, the need for retrieving real 3D objects has grown significantly. However, various important considerations must be taken into account to solve the real 3D object retrieval problem. Three-dimensional models obtained without the use of special equipment such as engineered environments or multi-camera systems are often incomplete. Therefore, the ability to perform partial matching is essential. Moreover, the time required for the matching process must be relatively short, since the operation will need to be performed repeatedly to deal with the dynamic nature of day-to-day human environments. Furthermore, real models often include rich texture information, which can compensate for the limited shape information. Thus, the descriptors of the 3D models have to consider both shape and texture patterns. In this paper, we present new 3D shape features which take into account the object\u2019s texture. The additive property of these features enables efficient partial matching between query data and 3D models in a database. In the experiments, we compare these features with conventional features, namely Spin-Image, Textured Spin-Image, and CHLAC features using a dataset of real textured objects. Furthermore, we demonstrate the retrieval performance of these features on a real color 3D scene.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00371-010-0521-3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1046897", 
        "issn": [
          "0178-2789", 
          "1432-2315"
        ], 
        "name": "The Visual Computer", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "10", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "26"
      }
    ], 
    "name": "Partial matching of real textured 3D objects using color cubic higher-order local auto-correlation features", 
    "pagination": "1269-1281", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "70f243d1562037fec5635c9a82677a3ea8ec355da2cea80bfe4ea8d2838f792c"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00371-010-0521-3"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1023706934"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00371-010-0521-3", 
      "https://app.dimensions.ai/details/publication/pub.1023706934"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T13:08", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8659_00000488.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s00371-010-0521-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00371-010-0521-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00371-010-0521-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00371-010-0521-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00371-010-0521-3'


 

This table displays all metadata directly associated to this object as RDF triples.

119 TRIPLES      21 PREDICATES      41 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00371-010-0521-3 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nfb6946e6a07245c089c7c8d79174ae21
4 schema:citation sg:pub.10.1007/s00371-006-0374-y
5 sg:pub.10.1007/s11263-006-6993-y
6 https://doi.org/10.1006/gmip.1998.0474
7 https://doi.org/10.1016/j.cad.2006.07.003
8 https://doi.org/10.1016/j.cviu.2004.03.016
9 https://doi.org/10.1016/s0262-8856(98)00074-2
10 https://doi.org/10.1109/34.765655
11 https://doi.org/10.1109/cvpr.1996.517172
12 https://doi.org/10.1109/icip.2007.4379206
13 https://doi.org/10.1109/icme.2002.1035812
14 https://doi.org/10.1109/icpr.2004.1333879
15 https://doi.org/10.1109/smi.2008.4547955
16 https://doi.org/10.1145/1118890.1118893
17 https://doi.org/10.1145/964965.808600
18 schema:datePublished 2010-10
19 schema:datePublishedReg 2010-10-01
20 schema:description In recent years, the need for retrieving real 3D objects has grown significantly. However, various important considerations must be taken into account to solve the real 3D object retrieval problem. Three-dimensional models obtained without the use of special equipment such as engineered environments or multi-camera systems are often incomplete. Therefore, the ability to perform partial matching is essential. Moreover, the time required for the matching process must be relatively short, since the operation will need to be performed repeatedly to deal with the dynamic nature of day-to-day human environments. Furthermore, real models often include rich texture information, which can compensate for the limited shape information. Thus, the descriptors of the 3D models have to consider both shape and texture patterns. In this paper, we present new 3D shape features which take into account the object’s texture. The additive property of these features enables efficient partial matching between query data and 3D models in a database. In the experiments, we compare these features with conventional features, namely Spin-Image, Textured Spin-Image, and CHLAC features using a dataset of real textured objects. Furthermore, we demonstrate the retrieval performance of these features on a real color 3D scene.
21 schema:genre research_article
22 schema:inLanguage en
23 schema:isAccessibleForFree false
24 schema:isPartOf N26eb44773024419b85b76fa76bd87d83
25 Nf6ec8ebde84c418aba51a3a0781d6597
26 sg:journal.1046897
27 schema:name Partial matching of real textured 3D objects using color cubic higher-order local auto-correlation features
28 schema:pagination 1269-1281
29 schema:productId N322f5f758cce4add90015da2ccc14c05
30 N3c388234b9b740d985de0af720da145a
31 N88dbc13c363a45f9871d982b8dbc4fed
32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023706934
33 https://doi.org/10.1007/s00371-010-0521-3
34 schema:sdDatePublished 2019-04-10T13:08
35 schema:sdLicense https://scigraph.springernature.com/explorer/license/
36 schema:sdPublisher N6b7d588404d8436891f32998f0adc3f6
37 schema:url http://link.springer.com/10.1007/s00371-010-0521-3
38 sgo:license sg:explorer/license/
39 sgo:sdDataset articles
40 rdf:type schema:ScholarlyArticle
41 N26eb44773024419b85b76fa76bd87d83 schema:volumeNumber 26
42 rdf:type schema:PublicationVolume
43 N322f5f758cce4add90015da2ccc14c05 schema:name readcube_id
44 schema:value 70f243d1562037fec5635c9a82677a3ea8ec355da2cea80bfe4ea8d2838f792c
45 rdf:type schema:PropertyValue
46 N3c388234b9b740d985de0af720da145a schema:name doi
47 schema:value 10.1007/s00371-010-0521-3
48 rdf:type schema:PropertyValue
49 N4f026c422552463abd2b3e363b13c292 rdf:first sg:person.013372311431.62
50 rdf:rest rdf:nil
51 N6b7d588404d8436891f32998f0adc3f6 schema:name Springer Nature - SN SciGraph project
52 rdf:type schema:Organization
53 N88dbc13c363a45f9871d982b8dbc4fed schema:name dimensions_id
54 schema:value pub.1023706934
55 rdf:type schema:PropertyValue
56 Nbf512330f4894b4ca3ba02907ab8f8b0 rdf:first sg:person.013240357031.31
57 rdf:rest N4f026c422552463abd2b3e363b13c292
58 Nf6ec8ebde84c418aba51a3a0781d6597 schema:issueNumber 10
59 rdf:type schema:PublicationIssue
60 Nfb6946e6a07245c089c7c8d79174ae21 rdf:first sg:person.012216327027.52
61 rdf:rest Nbf512330f4894b4ca3ba02907ab8f8b0
62 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
63 schema:name Information and Computing Sciences
64 rdf:type schema:DefinedTerm
65 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
66 schema:name Artificial Intelligence and Image Processing
67 rdf:type schema:DefinedTerm
68 sg:journal.1046897 schema:issn 0178-2789
69 1432-2315
70 schema:name The Visual Computer
71 rdf:type schema:Periodical
72 sg:person.012216327027.52 schema:affiliation https://www.grid.ac/institutes/grid.26999.3d
73 schema:familyName Kanezaki
74 schema:givenName Asako
75 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012216327027.52
76 rdf:type schema:Person
77 sg:person.013240357031.31 schema:affiliation https://www.grid.ac/institutes/grid.26999.3d
78 schema:familyName Harada
79 schema:givenName Tatsuya
80 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013240357031.31
81 rdf:type schema:Person
82 sg:person.013372311431.62 schema:affiliation https://www.grid.ac/institutes/grid.26999.3d
83 schema:familyName Kuniyoshi
84 schema:givenName Yasuo
85 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013372311431.62
86 rdf:type schema:Person
87 sg:pub.10.1007/s00371-006-0374-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1050809326
88 https://doi.org/10.1007/s00371-006-0374-y
89 rdf:type schema:CreativeWork
90 sg:pub.10.1007/s11263-006-6993-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1033098492
91 https://doi.org/10.1007/s11263-006-6993-y
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1006/gmip.1998.0474 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027050189
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1016/j.cad.2006.07.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040272995
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1016/j.cviu.2004.03.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014516783
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1016/s0262-8856(98)00074-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016519053
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1109/34.765655 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061156951
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1109/cvpr.1996.517172 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095400117
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1109/icip.2007.4379206 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094297004
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1109/icme.2002.1035812 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095342398
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1109/icpr.2004.1333879 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095190160
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1109/smi.2008.4547955 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095641272
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1145/1118890.1118893 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006084682
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1145/964965.808600 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038840604
116 rdf:type schema:CreativeWork
117 https://www.grid.ac/institutes/grid.26999.3d schema:alternateName University of Tokyo
118 schema:name The University of Tokyo, Tokyo, Japan
119 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...