Fast GPU computation of the mass properties of a general shape and its application to buoyancy simulation View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2006-08-29

AUTHORS

Jinwook Kim, Soojae Kim, Heedong Ko, Demetri Terzopoulos

ABSTRACT

To simulate solid dynamics, we must compute the mass, the center of mass, and the products of inertia about the axes of the body of interest. These mass property computations must be continuously repeated for certain simulations with rigid bodies or as the shape of the body changes. We introduce a GPU-friendly algorithm to approximate the mass properties for an arbitrarily shaped body. Our algorithm converts the necessary volume integrals into surface integrals on a projected plane. It then maps the plane into a framebuffer in order to perform the surface integrals rapidly on the GPU. To deal with non-convex shapes, we use a depth-peeling algorithm. Our approach is image-based; hence, it is not restricted by the mathematical or geometric representation of the body, which means that it can efficiently compute the mass properties of any object that can be rendered on the graphics hardware. We compare the speed and accuracy of our algorithm with an analytic algorithm, and demonstrate it in a hydrostatic buoyancy simulation for real-time applications, such as interactive games. More... »

PAGES

856-864

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00371-006-0071-x

DOI

http://dx.doi.org/10.1007/s00371-006-0071-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1053034528


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Imaging Media Research Center, Korea Institute of Science and Technology, 39-1 Hawolgok-dong, 136-791, Seongbuk-gu, Seoul, Korea", 
          "id": "http://www.grid.ac/institutes/grid.35541.36", 
          "name": [
            "Imaging Media Research Center, Korea Institute of Science and Technology, 39-1 Hawolgok-dong, 136-791, Seongbuk-gu, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Jinwook", 
        "id": "sg:person.010130256045.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010130256045.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Imaging Media Research Center, Korea Institute of Science and Technology, 39-1 Hawolgok-dong, 136-791, Seongbuk-gu, Seoul, Korea", 
          "id": "http://www.grid.ac/institutes/grid.35541.36", 
          "name": [
            "Imaging Media Research Center, Korea Institute of Science and Technology, 39-1 Hawolgok-dong, 136-791, Seongbuk-gu, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Soojae", 
        "id": "sg:person.010707325525.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010707325525.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Imaging Media Research Center, Korea Institute of Science and Technology, 39-1 Hawolgok-dong, 136-791, Seongbuk-gu, Seoul, Korea", 
          "id": "http://www.grid.ac/institutes/grid.35541.36", 
          "name": [
            "Imaging Media Research Center, Korea Institute of Science and Technology, 39-1 Hawolgok-dong, 136-791, Seongbuk-gu, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ko", 
        "givenName": "Heedong", 
        "id": "sg:person.010776376667.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010776376667.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Computer Science, University of California, 90095, Los Angeles, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.19006.3e", 
          "name": [
            "Department of Computer Science, University of California, 90095, Los Angeles, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Terzopoulos", 
        "givenName": "Demetri", 
        "id": "sg:person.016347323445.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016347323445.35"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s003710100131", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044090156", 
          "https://doi.org/10.1007/s003710100131"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2006-08-29", 
    "datePublishedReg": "2006-08-29", 
    "description": "To simulate solid dynamics, we must compute the mass, the center of mass, and the products of inertia about the axes of the body of interest. These mass property computations must be continuously repeated for certain simulations with rigid bodies or as the shape of the body changes. We introduce a GPU-friendly algorithm to approximate the mass properties for an arbitrarily shaped body. Our algorithm converts the necessary volume integrals into surface integrals on a projected plane. It then maps the plane into a framebuffer in order to perform the surface integrals rapidly on the GPU. To deal with non-convex shapes, we use a depth-peeling algorithm. Our approach is image-based; hence, it is not restricted by the mathematical or geometric representation of the body, which means that it can efficiently compute the mass properties of any object that can be rendered on the graphics hardware. We compare the speed and accuracy of our algorithm with an analytic algorithm, and demonstrate it in a hydrostatic buoyancy simulation for real-time applications, such as interactive games.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00371-006-0071-x", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1046897", 
        "issn": [
          "0178-2789", 
          "1432-2315"
        ], 
        "name": "The Visual Computer", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "9-11", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "22"
      }
    ], 
    "keywords": [
      "GPU-friendly algorithm", 
      "surface integrals", 
      "non-convex shapes", 
      "geometric representation", 
      "solid dynamics", 
      "products of inertia", 
      "volume integral", 
      "real-time applications", 
      "rigid body", 
      "integrals", 
      "mass properties", 
      "GPU computation", 
      "analytic algorithm", 
      "body of interest", 
      "property computations", 
      "certain simulations", 
      "algorithm", 
      "computation", 
      "center of mass", 
      "simulations", 
      "graphics hardware", 
      "general shape", 
      "applications", 
      "dynamics", 
      "representation", 
      "GPU", 
      "accuracy", 
      "properties", 
      "approach", 
      "game", 
      "inertia", 
      "plane", 
      "speed", 
      "interactive games", 
      "hardware", 
      "shape", 
      "objects", 
      "order", 
      "framebuffer", 
      "axes", 
      "interest", 
      "body", 
      "mass", 
      "products", 
      "center", 
      "mass property computations", 
      "necessary volume integrals", 
      "depth-peeling algorithm", 
      "hydrostatic buoyancy simulation", 
      "buoyancy simulation", 
      "Fast GPU computation"
    ], 
    "name": "Fast GPU computation of the mass properties of a general shape and its application to buoyancy simulation", 
    "pagination": "856-864", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1053034528"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00371-006-0071-x"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00371-006-0071-x", 
      "https://app.dimensions.ai/details/publication/pub.1053034528"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:15", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_414.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00371-006-0071-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00371-006-0071-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00371-006-0071-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00371-006-0071-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00371-006-0071-x'


 

This table displays all metadata directly associated to this object as RDF triples.

137 TRIPLES      22 PREDICATES      77 URIs      68 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00371-006-0071-x schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N942fa9f8e881436da7528d5685540a9a
4 schema:citation sg:pub.10.1007/s003710100131
5 schema:datePublished 2006-08-29
6 schema:datePublishedReg 2006-08-29
7 schema:description To simulate solid dynamics, we must compute the mass, the center of mass, and the products of inertia about the axes of the body of interest. These mass property computations must be continuously repeated for certain simulations with rigid bodies or as the shape of the body changes. We introduce a GPU-friendly algorithm to approximate the mass properties for an arbitrarily shaped body. Our algorithm converts the necessary volume integrals into surface integrals on a projected plane. It then maps the plane into a framebuffer in order to perform the surface integrals rapidly on the GPU. To deal with non-convex shapes, we use a depth-peeling algorithm. Our approach is image-based; hence, it is not restricted by the mathematical or geometric representation of the body, which means that it can efficiently compute the mass properties of any object that can be rendered on the graphics hardware. We compare the speed and accuracy of our algorithm with an analytic algorithm, and demonstrate it in a hydrostatic buoyancy simulation for real-time applications, such as interactive games.
8 schema:genre article
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf Ncbd1c93d579942ccb6522599218f014a
12 Nd5f534f5245e4a46b717e4f794b48799
13 sg:journal.1046897
14 schema:keywords Fast GPU computation
15 GPU
16 GPU computation
17 GPU-friendly algorithm
18 accuracy
19 algorithm
20 analytic algorithm
21 applications
22 approach
23 axes
24 body
25 body of interest
26 buoyancy simulation
27 center
28 center of mass
29 certain simulations
30 computation
31 depth-peeling algorithm
32 dynamics
33 framebuffer
34 game
35 general shape
36 geometric representation
37 graphics hardware
38 hardware
39 hydrostatic buoyancy simulation
40 inertia
41 integrals
42 interactive games
43 interest
44 mass
45 mass properties
46 mass property computations
47 necessary volume integrals
48 non-convex shapes
49 objects
50 order
51 plane
52 products
53 products of inertia
54 properties
55 property computations
56 real-time applications
57 representation
58 rigid body
59 shape
60 simulations
61 solid dynamics
62 speed
63 surface integrals
64 volume integral
65 schema:name Fast GPU computation of the mass properties of a general shape and its application to buoyancy simulation
66 schema:pagination 856-864
67 schema:productId N83d884428e0c42e9bbcae4a1402e4f5b
68 Na11d4c19f8b2442386ca64cc40a9a849
69 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053034528
70 https://doi.org/10.1007/s00371-006-0071-x
71 schema:sdDatePublished 2022-01-01T18:15
72 schema:sdLicense https://scigraph.springernature.com/explorer/license/
73 schema:sdPublisher N7dcff2a40d5e44e6b9b3492cd07c1988
74 schema:url https://doi.org/10.1007/s00371-006-0071-x
75 sgo:license sg:explorer/license/
76 sgo:sdDataset articles
77 rdf:type schema:ScholarlyArticle
78 N3902dc92c9444f13afcead46cd3ab6c1 rdf:first sg:person.010776376667.80
79 rdf:rest Nd5c7fc7f7da24a6498efd7f1fdd03b63
80 N4a29af9ffee74c29b1c23523c1e6b5bc rdf:first sg:person.010707325525.53
81 rdf:rest N3902dc92c9444f13afcead46cd3ab6c1
82 N7dcff2a40d5e44e6b9b3492cd07c1988 schema:name Springer Nature - SN SciGraph project
83 rdf:type schema:Organization
84 N83d884428e0c42e9bbcae4a1402e4f5b schema:name dimensions_id
85 schema:value pub.1053034528
86 rdf:type schema:PropertyValue
87 N942fa9f8e881436da7528d5685540a9a rdf:first sg:person.010130256045.39
88 rdf:rest N4a29af9ffee74c29b1c23523c1e6b5bc
89 Na11d4c19f8b2442386ca64cc40a9a849 schema:name doi
90 schema:value 10.1007/s00371-006-0071-x
91 rdf:type schema:PropertyValue
92 Ncbd1c93d579942ccb6522599218f014a schema:issueNumber 9-11
93 rdf:type schema:PublicationIssue
94 Nd5c7fc7f7da24a6498efd7f1fdd03b63 rdf:first sg:person.016347323445.35
95 rdf:rest rdf:nil
96 Nd5f534f5245e4a46b717e4f794b48799 schema:volumeNumber 22
97 rdf:type schema:PublicationVolume
98 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
99 schema:name Information and Computing Sciences
100 rdf:type schema:DefinedTerm
101 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
102 schema:name Artificial Intelligence and Image Processing
103 rdf:type schema:DefinedTerm
104 sg:journal.1046897 schema:issn 0178-2789
105 1432-2315
106 schema:name The Visual Computer
107 schema:publisher Springer Nature
108 rdf:type schema:Periodical
109 sg:person.010130256045.39 schema:affiliation grid-institutes:grid.35541.36
110 schema:familyName Kim
111 schema:givenName Jinwook
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010130256045.39
113 rdf:type schema:Person
114 sg:person.010707325525.53 schema:affiliation grid-institutes:grid.35541.36
115 schema:familyName Kim
116 schema:givenName Soojae
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010707325525.53
118 rdf:type schema:Person
119 sg:person.010776376667.80 schema:affiliation grid-institutes:grid.35541.36
120 schema:familyName Ko
121 schema:givenName Heedong
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010776376667.80
123 rdf:type schema:Person
124 sg:person.016347323445.35 schema:affiliation grid-institutes:grid.19006.3e
125 schema:familyName Terzopoulos
126 schema:givenName Demetri
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016347323445.35
128 rdf:type schema:Person
129 sg:pub.10.1007/s003710100131 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044090156
130 https://doi.org/10.1007/s003710100131
131 rdf:type schema:CreativeWork
132 grid-institutes:grid.19006.3e schema:alternateName Department of Computer Science, University of California, 90095, Los Angeles, CA, USA
133 schema:name Department of Computer Science, University of California, 90095, Los Angeles, CA, USA
134 rdf:type schema:Organization
135 grid-institutes:grid.35541.36 schema:alternateName Imaging Media Research Center, Korea Institute of Science and Technology, 39-1 Hawolgok-dong, 136-791, Seongbuk-gu, Seoul, Korea
136 schema:name Imaging Media Research Center, Korea Institute of Science and Technology, 39-1 Hawolgok-dong, 136-791, Seongbuk-gu, Seoul, Korea
137 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...