Fast GPU computation of the mass properties of a general shape and its application to buoyancy simulation View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2006-08-29

AUTHORS

Jinwook Kim, Soojae Kim, Heedong Ko, Demetri Terzopoulos

ABSTRACT

To simulate solid dynamics, we must compute the mass, the center of mass, and the products of inertia about the axes of the body of interest. These mass property computations must be continuously repeated for certain simulations with rigid bodies or as the shape of the body changes. We introduce a GPU-friendly algorithm to approximate the mass properties for an arbitrarily shaped body. Our algorithm converts the necessary volume integrals into surface integrals on a projected plane. It then maps the plane into a framebuffer in order to perform the surface integrals rapidly on the GPU. To deal with non-convex shapes, we use a depth-peeling algorithm. Our approach is image-based; hence, it is not restricted by the mathematical or geometric representation of the body, which means that it can efficiently compute the mass properties of any object that can be rendered on the graphics hardware. We compare the speed and accuracy of our algorithm with an analytic algorithm, and demonstrate it in a hydrostatic buoyancy simulation for real-time applications, such as interactive games. More... »

PAGES

856-864

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00371-006-0071-x

DOI

http://dx.doi.org/10.1007/s00371-006-0071-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1053034528


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Imaging Media Research Center, Korea Institute of Science and Technology, 39-1 Hawolgok-dong, 136-791, Seongbuk-gu, Seoul, Korea", 
          "id": "http://www.grid.ac/institutes/grid.35541.36", 
          "name": [
            "Imaging Media Research Center, Korea Institute of Science and Technology, 39-1 Hawolgok-dong, 136-791, Seongbuk-gu, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Jinwook", 
        "id": "sg:person.010130256045.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010130256045.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Imaging Media Research Center, Korea Institute of Science and Technology, 39-1 Hawolgok-dong, 136-791, Seongbuk-gu, Seoul, Korea", 
          "id": "http://www.grid.ac/institutes/grid.35541.36", 
          "name": [
            "Imaging Media Research Center, Korea Institute of Science and Technology, 39-1 Hawolgok-dong, 136-791, Seongbuk-gu, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Soojae", 
        "id": "sg:person.010707325525.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010707325525.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Imaging Media Research Center, Korea Institute of Science and Technology, 39-1 Hawolgok-dong, 136-791, Seongbuk-gu, Seoul, Korea", 
          "id": "http://www.grid.ac/institutes/grid.35541.36", 
          "name": [
            "Imaging Media Research Center, Korea Institute of Science and Technology, 39-1 Hawolgok-dong, 136-791, Seongbuk-gu, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ko", 
        "givenName": "Heedong", 
        "id": "sg:person.010776376667.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010776376667.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Computer Science, University of California, 90095, Los Angeles, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.19006.3e", 
          "name": [
            "Department of Computer Science, University of California, 90095, Los Angeles, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Terzopoulos", 
        "givenName": "Demetri", 
        "id": "sg:person.016347323445.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016347323445.35"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s003710100131", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044090156", 
          "https://doi.org/10.1007/s003710100131"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2006-08-29", 
    "datePublishedReg": "2006-08-29", 
    "description": "To simulate solid dynamics, we must compute the mass, the center of mass, and the products of inertia about the axes of the body of interest. These mass property computations must be continuously repeated for certain simulations with rigid bodies or as the shape of the body changes. We introduce a GPU-friendly algorithm to approximate the mass properties for an arbitrarily shaped body. Our algorithm converts the necessary volume integrals into surface integrals on a projected plane. It then maps the plane into a framebuffer in order to perform the surface integrals rapidly on the GPU. To deal with non-convex shapes, we use a depth-peeling algorithm. Our approach is image-based; hence, it is not restricted by the mathematical or geometric representation of the body, which means that it can efficiently compute the mass properties of any object that can be rendered on the graphics hardware. We compare the speed and accuracy of our algorithm with an analytic algorithm, and demonstrate it in a hydrostatic buoyancy simulation for real-time applications, such as interactive games.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00371-006-0071-x", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1046897", 
        "issn": [
          "0178-2789", 
          "1432-2315"
        ], 
        "name": "The Visual Computer", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "9-11", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "22"
      }
    ], 
    "keywords": [
      "surface integrals", 
      "GPU-friendly algorithm", 
      "real-time applications", 
      "fast GPU computation", 
      "products of inertia", 
      "graphics hardware", 
      "GPU computation", 
      "non-convex shapes", 
      "body of interest", 
      "geometric representation", 
      "volume integral", 
      "solid dynamics", 
      "analytic algorithm", 
      "interactive games", 
      "rigid body", 
      "certain simulations", 
      "center of mass", 
      "integrals", 
      "mass properties", 
      "property computations", 
      "algorithm", 
      "computation", 
      "general shape", 
      "simulations", 
      "framebuffer", 
      "GPU", 
      "hardware", 
      "plane", 
      "properties", 
      "applications", 
      "shape", 
      "objects", 
      "dynamics", 
      "game", 
      "inertia", 
      "representation", 
      "accuracy", 
      "axes", 
      "speed", 
      "approach", 
      "order", 
      "mass", 
      "interest", 
      "body", 
      "center", 
      "products"
    ], 
    "name": "Fast GPU computation of the mass properties of a general shape and its application to buoyancy simulation", 
    "pagination": "856-864", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1053034528"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00371-006-0071-x"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00371-006-0071-x", 
      "https://app.dimensions.ai/details/publication/pub.1053034528"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-10T09:54", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_423.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00371-006-0071-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00371-006-0071-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00371-006-0071-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00371-006-0071-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00371-006-0071-x'


 

This table displays all metadata directly associated to this object as RDF triples.

132 TRIPLES      22 PREDICATES      72 URIs      63 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00371-006-0071-x schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N1c3bf80b191e4618b553a4e69cecb630
4 schema:citation sg:pub.10.1007/s003710100131
5 schema:datePublished 2006-08-29
6 schema:datePublishedReg 2006-08-29
7 schema:description To simulate solid dynamics, we must compute the mass, the center of mass, and the products of inertia about the axes of the body of interest. These mass property computations must be continuously repeated for certain simulations with rigid bodies or as the shape of the body changes. We introduce a GPU-friendly algorithm to approximate the mass properties for an arbitrarily shaped body. Our algorithm converts the necessary volume integrals into surface integrals on a projected plane. It then maps the plane into a framebuffer in order to perform the surface integrals rapidly on the GPU. To deal with non-convex shapes, we use a depth-peeling algorithm. Our approach is image-based; hence, it is not restricted by the mathematical or geometric representation of the body, which means that it can efficiently compute the mass properties of any object that can be rendered on the graphics hardware. We compare the speed and accuracy of our algorithm with an analytic algorithm, and demonstrate it in a hydrostatic buoyancy simulation for real-time applications, such as interactive games.
8 schema:genre article
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N1eefddd4f8654abaa769eb38b146453e
12 Ncffb700a1ff04058b421c00ea7688876
13 sg:journal.1046897
14 schema:keywords GPU
15 GPU computation
16 GPU-friendly algorithm
17 accuracy
18 algorithm
19 analytic algorithm
20 applications
21 approach
22 axes
23 body
24 body of interest
25 center
26 center of mass
27 certain simulations
28 computation
29 dynamics
30 fast GPU computation
31 framebuffer
32 game
33 general shape
34 geometric representation
35 graphics hardware
36 hardware
37 inertia
38 integrals
39 interactive games
40 interest
41 mass
42 mass properties
43 non-convex shapes
44 objects
45 order
46 plane
47 products
48 products of inertia
49 properties
50 property computations
51 real-time applications
52 representation
53 rigid body
54 shape
55 simulations
56 solid dynamics
57 speed
58 surface integrals
59 volume integral
60 schema:name Fast GPU computation of the mass properties of a general shape and its application to buoyancy simulation
61 schema:pagination 856-864
62 schema:productId N50897100ea3a4f3d98ddf01c788dbadf
63 Nedbeab27a8df41b493b32d66a461bd61
64 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053034528
65 https://doi.org/10.1007/s00371-006-0071-x
66 schema:sdDatePublished 2022-05-10T09:54
67 schema:sdLicense https://scigraph.springernature.com/explorer/license/
68 schema:sdPublisher N34e91f82f3534e0a9016c1b2f7a41c36
69 schema:url https://doi.org/10.1007/s00371-006-0071-x
70 sgo:license sg:explorer/license/
71 sgo:sdDataset articles
72 rdf:type schema:ScholarlyArticle
73 N1c3bf80b191e4618b553a4e69cecb630 rdf:first sg:person.010130256045.39
74 rdf:rest N768acbb991f24539823aef90a00fd709
75 N1eefddd4f8654abaa769eb38b146453e schema:volumeNumber 22
76 rdf:type schema:PublicationVolume
77 N33edaaf196c141409370c41f1d240935 rdf:first sg:person.010776376667.80
78 rdf:rest N7ea4d3b3be3345a7997aaa056152faab
79 N34e91f82f3534e0a9016c1b2f7a41c36 schema:name Springer Nature - SN SciGraph project
80 rdf:type schema:Organization
81 N50897100ea3a4f3d98ddf01c788dbadf schema:name doi
82 schema:value 10.1007/s00371-006-0071-x
83 rdf:type schema:PropertyValue
84 N768acbb991f24539823aef90a00fd709 rdf:first sg:person.010707325525.53
85 rdf:rest N33edaaf196c141409370c41f1d240935
86 N7ea4d3b3be3345a7997aaa056152faab rdf:first sg:person.016347323445.35
87 rdf:rest rdf:nil
88 Ncffb700a1ff04058b421c00ea7688876 schema:issueNumber 9-11
89 rdf:type schema:PublicationIssue
90 Nedbeab27a8df41b493b32d66a461bd61 schema:name dimensions_id
91 schema:value pub.1053034528
92 rdf:type schema:PropertyValue
93 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
94 schema:name Information and Computing Sciences
95 rdf:type schema:DefinedTerm
96 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
97 schema:name Artificial Intelligence and Image Processing
98 rdf:type schema:DefinedTerm
99 sg:journal.1046897 schema:issn 0178-2789
100 1432-2315
101 schema:name The Visual Computer
102 schema:publisher Springer Nature
103 rdf:type schema:Periodical
104 sg:person.010130256045.39 schema:affiliation grid-institutes:grid.35541.36
105 schema:familyName Kim
106 schema:givenName Jinwook
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010130256045.39
108 rdf:type schema:Person
109 sg:person.010707325525.53 schema:affiliation grid-institutes:grid.35541.36
110 schema:familyName Kim
111 schema:givenName Soojae
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010707325525.53
113 rdf:type schema:Person
114 sg:person.010776376667.80 schema:affiliation grid-institutes:grid.35541.36
115 schema:familyName Ko
116 schema:givenName Heedong
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010776376667.80
118 rdf:type schema:Person
119 sg:person.016347323445.35 schema:affiliation grid-institutes:grid.19006.3e
120 schema:familyName Terzopoulos
121 schema:givenName Demetri
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016347323445.35
123 rdf:type schema:Person
124 sg:pub.10.1007/s003710100131 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044090156
125 https://doi.org/10.1007/s003710100131
126 rdf:type schema:CreativeWork
127 grid-institutes:grid.19006.3e schema:alternateName Department of Computer Science, University of California, 90095, Los Angeles, CA, USA
128 schema:name Department of Computer Science, University of California, 90095, Los Angeles, CA, USA
129 rdf:type schema:Organization
130 grid-institutes:grid.35541.36 schema:alternateName Imaging Media Research Center, Korea Institute of Science and Technology, 39-1 Hawolgok-dong, 136-791, Seongbuk-gu, Seoul, Korea
131 schema:name Imaging Media Research Center, Korea Institute of Science and Technology, 39-1 Hawolgok-dong, 136-791, Seongbuk-gu, Seoul, Korea
132 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...