Ontology type: schema:ScholarlyArticle
2006-08-29
AUTHORSJinwook Kim, Soojae Kim, Heedong Ko, Demetri Terzopoulos
ABSTRACTTo simulate solid dynamics, we must compute the mass, the center of mass, and the products of inertia about the axes of the body of interest. These mass property computations must be continuously repeated for certain simulations with rigid bodies or as the shape of the body changes. We introduce a GPU-friendly algorithm to approximate the mass properties for an arbitrarily shaped body. Our algorithm converts the necessary volume integrals into surface integrals on a projected plane. It then maps the plane into a framebuffer in order to perform the surface integrals rapidly on the GPU. To deal with non-convex shapes, we use a depth-peeling algorithm. Our approach is image-based; hence, it is not restricted by the mathematical or geometric representation of the body, which means that it can efficiently compute the mass properties of any object that can be rendered on the graphics hardware. We compare the speed and accuracy of our algorithm with an analytic algorithm, and demonstrate it in a hydrostatic buoyancy simulation for real-time applications, such as interactive games. More... »
PAGES856-864
http://scigraph.springernature.com/pub.10.1007/s00371-006-0071-x
DOIhttp://dx.doi.org/10.1007/s00371-006-0071-x
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1053034528
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Information and Computing Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Artificial Intelligence and Image Processing",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Imaging Media Research Center, Korea Institute of Science and Technology, 39-1 Hawolgok-dong, 136-791, Seongbuk-gu, Seoul, Korea",
"id": "http://www.grid.ac/institutes/grid.35541.36",
"name": [
"Imaging Media Research Center, Korea Institute of Science and Technology, 39-1 Hawolgok-dong, 136-791, Seongbuk-gu, Seoul, Korea"
],
"type": "Organization"
},
"familyName": "Kim",
"givenName": "Jinwook",
"id": "sg:person.010130256045.39",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010130256045.39"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Imaging Media Research Center, Korea Institute of Science and Technology, 39-1 Hawolgok-dong, 136-791, Seongbuk-gu, Seoul, Korea",
"id": "http://www.grid.ac/institutes/grid.35541.36",
"name": [
"Imaging Media Research Center, Korea Institute of Science and Technology, 39-1 Hawolgok-dong, 136-791, Seongbuk-gu, Seoul, Korea"
],
"type": "Organization"
},
"familyName": "Kim",
"givenName": "Soojae",
"id": "sg:person.010707325525.53",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010707325525.53"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Imaging Media Research Center, Korea Institute of Science and Technology, 39-1 Hawolgok-dong, 136-791, Seongbuk-gu, Seoul, Korea",
"id": "http://www.grid.ac/institutes/grid.35541.36",
"name": [
"Imaging Media Research Center, Korea Institute of Science and Technology, 39-1 Hawolgok-dong, 136-791, Seongbuk-gu, Seoul, Korea"
],
"type": "Organization"
},
"familyName": "Ko",
"givenName": "Heedong",
"id": "sg:person.010776376667.80",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010776376667.80"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Computer Science, University of California, 90095, Los Angeles, CA, USA",
"id": "http://www.grid.ac/institutes/grid.19006.3e",
"name": [
"Department of Computer Science, University of California, 90095, Los Angeles, CA, USA"
],
"type": "Organization"
},
"familyName": "Terzopoulos",
"givenName": "Demetri",
"id": "sg:person.016347323445.35",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016347323445.35"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/s003710100131",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1044090156",
"https://doi.org/10.1007/s003710100131"
],
"type": "CreativeWork"
}
],
"datePublished": "2006-08-29",
"datePublishedReg": "2006-08-29",
"description": "To simulate solid dynamics, we must compute the mass, the center of mass, and the products of inertia about the axes of the body of interest. These mass property computations must be continuously repeated for certain simulations with rigid bodies or as the shape of the body changes. We introduce a GPU-friendly algorithm to approximate the mass properties for an arbitrarily shaped body. Our algorithm converts the necessary volume integrals into surface integrals on a projected plane. It then maps the plane into a framebuffer in order to perform the surface integrals rapidly on the GPU. To deal with non-convex shapes, we use a depth-peeling algorithm. Our approach is image-based; hence, it is not restricted by the mathematical or geometric representation of the body, which means that it can efficiently compute the mass properties of any object that can be rendered on the graphics hardware. We compare the speed and accuracy of our algorithm with an analytic algorithm, and demonstrate it in a hydrostatic buoyancy simulation for real-time applications, such as interactive games.",
"genre": "article",
"id": "sg:pub.10.1007/s00371-006-0071-x",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1046897",
"issn": [
"0178-2789",
"1432-2315"
],
"name": "The Visual Computer",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "9-11",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "22"
}
],
"keywords": [
"surface integrals",
"GPU-friendly algorithm",
"real-time applications",
"fast GPU computation",
"products of inertia",
"graphics hardware",
"GPU computation",
"non-convex shapes",
"body of interest",
"geometric representation",
"volume integral",
"solid dynamics",
"analytic algorithm",
"interactive games",
"rigid body",
"certain simulations",
"center of mass",
"integrals",
"mass properties",
"property computations",
"algorithm",
"computation",
"general shape",
"simulations",
"framebuffer",
"GPU",
"hardware",
"plane",
"properties",
"applications",
"shape",
"objects",
"dynamics",
"game",
"inertia",
"representation",
"accuracy",
"axes",
"speed",
"approach",
"order",
"mass",
"interest",
"body",
"center",
"products"
],
"name": "Fast GPU computation of the mass properties of a general shape and its application to buoyancy simulation",
"pagination": "856-864",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1053034528"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s00371-006-0071-x"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s00371-006-0071-x",
"https://app.dimensions.ai/details/publication/pub.1053034528"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-10T09:54",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_423.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s00371-006-0071-x"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00371-006-0071-x'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00371-006-0071-x'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00371-006-0071-x'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00371-006-0071-x'
This table displays all metadata directly associated to this object as RDF triples.
132 TRIPLES
22 PREDICATES
72 URIs
63 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/s00371-006-0071-x | schema:about | anzsrc-for:08 |
2 | ″ | ″ | anzsrc-for:0801 |
3 | ″ | schema:author | N1c3bf80b191e4618b553a4e69cecb630 |
4 | ″ | schema:citation | sg:pub.10.1007/s003710100131 |
5 | ″ | schema:datePublished | 2006-08-29 |
6 | ″ | schema:datePublishedReg | 2006-08-29 |
7 | ″ | schema:description | To simulate solid dynamics, we must compute the mass, the center of mass, and the products of inertia about the axes of the body of interest. These mass property computations must be continuously repeated for certain simulations with rigid bodies or as the shape of the body changes. We introduce a GPU-friendly algorithm to approximate the mass properties for an arbitrarily shaped body. Our algorithm converts the necessary volume integrals into surface integrals on a projected plane. It then maps the plane into a framebuffer in order to perform the surface integrals rapidly on the GPU. To deal with non-convex shapes, we use a depth-peeling algorithm. Our approach is image-based; hence, it is not restricted by the mathematical or geometric representation of the body, which means that it can efficiently compute the mass properties of any object that can be rendered on the graphics hardware. We compare the speed and accuracy of our algorithm with an analytic algorithm, and demonstrate it in a hydrostatic buoyancy simulation for real-time applications, such as interactive games. |
8 | ″ | schema:genre | article |
9 | ″ | schema:inLanguage | en |
10 | ″ | schema:isAccessibleForFree | false |
11 | ″ | schema:isPartOf | N1eefddd4f8654abaa769eb38b146453e |
12 | ″ | ″ | Ncffb700a1ff04058b421c00ea7688876 |
13 | ″ | ″ | sg:journal.1046897 |
14 | ″ | schema:keywords | GPU |
15 | ″ | ″ | GPU computation |
16 | ″ | ″ | GPU-friendly algorithm |
17 | ″ | ″ | accuracy |
18 | ″ | ″ | algorithm |
19 | ″ | ″ | analytic algorithm |
20 | ″ | ″ | applications |
21 | ″ | ″ | approach |
22 | ″ | ″ | axes |
23 | ″ | ″ | body |
24 | ″ | ″ | body of interest |
25 | ″ | ″ | center |
26 | ″ | ″ | center of mass |
27 | ″ | ″ | certain simulations |
28 | ″ | ″ | computation |
29 | ″ | ″ | dynamics |
30 | ″ | ″ | fast GPU computation |
31 | ″ | ″ | framebuffer |
32 | ″ | ″ | game |
33 | ″ | ″ | general shape |
34 | ″ | ″ | geometric representation |
35 | ″ | ″ | graphics hardware |
36 | ″ | ″ | hardware |
37 | ″ | ″ | inertia |
38 | ″ | ″ | integrals |
39 | ″ | ″ | interactive games |
40 | ″ | ″ | interest |
41 | ″ | ″ | mass |
42 | ″ | ″ | mass properties |
43 | ″ | ″ | non-convex shapes |
44 | ″ | ″ | objects |
45 | ″ | ″ | order |
46 | ″ | ″ | plane |
47 | ″ | ″ | products |
48 | ″ | ″ | products of inertia |
49 | ″ | ″ | properties |
50 | ″ | ″ | property computations |
51 | ″ | ″ | real-time applications |
52 | ″ | ″ | representation |
53 | ″ | ″ | rigid body |
54 | ″ | ″ | shape |
55 | ″ | ″ | simulations |
56 | ″ | ″ | solid dynamics |
57 | ″ | ″ | speed |
58 | ″ | ″ | surface integrals |
59 | ″ | ″ | volume integral |
60 | ″ | schema:name | Fast GPU computation of the mass properties of a general shape and its application to buoyancy simulation |
61 | ″ | schema:pagination | 856-864 |
62 | ″ | schema:productId | N50897100ea3a4f3d98ddf01c788dbadf |
63 | ″ | ″ | Nedbeab27a8df41b493b32d66a461bd61 |
64 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1053034528 |
65 | ″ | ″ | https://doi.org/10.1007/s00371-006-0071-x |
66 | ″ | schema:sdDatePublished | 2022-05-10T09:54 |
67 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
68 | ″ | schema:sdPublisher | N34e91f82f3534e0a9016c1b2f7a41c36 |
69 | ″ | schema:url | https://doi.org/10.1007/s00371-006-0071-x |
70 | ″ | sgo:license | sg:explorer/license/ |
71 | ″ | sgo:sdDataset | articles |
72 | ″ | rdf:type | schema:ScholarlyArticle |
73 | N1c3bf80b191e4618b553a4e69cecb630 | rdf:first | sg:person.010130256045.39 |
74 | ″ | rdf:rest | N768acbb991f24539823aef90a00fd709 |
75 | N1eefddd4f8654abaa769eb38b146453e | schema:volumeNumber | 22 |
76 | ″ | rdf:type | schema:PublicationVolume |
77 | N33edaaf196c141409370c41f1d240935 | rdf:first | sg:person.010776376667.80 |
78 | ″ | rdf:rest | N7ea4d3b3be3345a7997aaa056152faab |
79 | N34e91f82f3534e0a9016c1b2f7a41c36 | schema:name | Springer Nature - SN SciGraph project |
80 | ″ | rdf:type | schema:Organization |
81 | N50897100ea3a4f3d98ddf01c788dbadf | schema:name | doi |
82 | ″ | schema:value | 10.1007/s00371-006-0071-x |
83 | ″ | rdf:type | schema:PropertyValue |
84 | N768acbb991f24539823aef90a00fd709 | rdf:first | sg:person.010707325525.53 |
85 | ″ | rdf:rest | N33edaaf196c141409370c41f1d240935 |
86 | N7ea4d3b3be3345a7997aaa056152faab | rdf:first | sg:person.016347323445.35 |
87 | ″ | rdf:rest | rdf:nil |
88 | Ncffb700a1ff04058b421c00ea7688876 | schema:issueNumber | 9-11 |
89 | ″ | rdf:type | schema:PublicationIssue |
90 | Nedbeab27a8df41b493b32d66a461bd61 | schema:name | dimensions_id |
91 | ″ | schema:value | pub.1053034528 |
92 | ″ | rdf:type | schema:PropertyValue |
93 | anzsrc-for:08 | schema:inDefinedTermSet | anzsrc-for: |
94 | ″ | schema:name | Information and Computing Sciences |
95 | ″ | rdf:type | schema:DefinedTerm |
96 | anzsrc-for:0801 | schema:inDefinedTermSet | anzsrc-for: |
97 | ″ | schema:name | Artificial Intelligence and Image Processing |
98 | ″ | rdf:type | schema:DefinedTerm |
99 | sg:journal.1046897 | schema:issn | 0178-2789 |
100 | ″ | ″ | 1432-2315 |
101 | ″ | schema:name | The Visual Computer |
102 | ″ | schema:publisher | Springer Nature |
103 | ″ | rdf:type | schema:Periodical |
104 | sg:person.010130256045.39 | schema:affiliation | grid-institutes:grid.35541.36 |
105 | ″ | schema:familyName | Kim |
106 | ″ | schema:givenName | Jinwook |
107 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010130256045.39 |
108 | ″ | rdf:type | schema:Person |
109 | sg:person.010707325525.53 | schema:affiliation | grid-institutes:grid.35541.36 |
110 | ″ | schema:familyName | Kim |
111 | ″ | schema:givenName | Soojae |
112 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010707325525.53 |
113 | ″ | rdf:type | schema:Person |
114 | sg:person.010776376667.80 | schema:affiliation | grid-institutes:grid.35541.36 |
115 | ″ | schema:familyName | Ko |
116 | ″ | schema:givenName | Heedong |
117 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010776376667.80 |
118 | ″ | rdf:type | schema:Person |
119 | sg:person.016347323445.35 | schema:affiliation | grid-institutes:grid.19006.3e |
120 | ″ | schema:familyName | Terzopoulos |
121 | ″ | schema:givenName | Demetri |
122 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016347323445.35 |
123 | ″ | rdf:type | schema:Person |
124 | sg:pub.10.1007/s003710100131 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1044090156 |
125 | ″ | ″ | https://doi.org/10.1007/s003710100131 |
126 | ″ | rdf:type | schema:CreativeWork |
127 | grid-institutes:grid.19006.3e | schema:alternateName | Department of Computer Science, University of California, 90095, Los Angeles, CA, USA |
128 | ″ | schema:name | Department of Computer Science, University of California, 90095, Los Angeles, CA, USA |
129 | ″ | rdf:type | schema:Organization |
130 | grid-institutes:grid.35541.36 | schema:alternateName | Imaging Media Research Center, Korea Institute of Science and Technology, 39-1 Hawolgok-dong, 136-791, Seongbuk-gu, Seoul, Korea |
131 | ″ | schema:name | Imaging Media Research Center, Korea Institute of Science and Technology, 39-1 Hawolgok-dong, 136-791, Seongbuk-gu, Seoul, Korea |
132 | ″ | rdf:type | schema:Organization |