Ontology type: schema:ScholarlyArticle
2021-12-02
AUTHORS ABSTRACTThis paper presents nonlinear vibration behavior of shear deformable bidirectional porous beams with non-uniform porosity distribution. A new porosity distributions are proposed to maximize natural frequencies of the porous beam. It is assumed that closed-cell voids are distributed along the thickness and length of the beam. Hamilton principle is used to derive nonlinear governing equations using Reddy beam theory considering von Karman geometrical nonlinearity. Generalized differential quadrature method, harmonic balance approach along with the Picard iterative approach are used to discretize and solve the nonlinear dynamic equations. The variation of nonlinear frequency versus the vibration amplitude is highlighted considering various influential factors such as geometrical parameters, porosity distributions, beam theories and boundary conditions. It is shown that the newly defined porosity distribution can increase the frequencies in comparison to the conventional porosity distribution. Comparing beams of the same weight shows that porosities near the center of the beam further increases frequencies in comparison to the other porosity distributions. Moreover, bidirectional porosity increases the frequencies in comparison to the unidirectional porosity. Frequencies of the bidirectional porous Reddy beam depend not only on the bending stiffness, as in the case of unidirectional porous beam, but also on the first derivative of the bending stiffness. More... »
PAGES1-17
http://scigraph.springernature.com/pub.10.1007/s00366-021-01553-x
DOIhttp://dx.doi.org/10.1007/s00366-021-01553-x
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1143575733
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Pure Mathematics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Department of Mechanical Engineering, The University of British Columbia, Vancouver, BC, Canada",
"id": "http://www.grid.ac/institutes/grid.17091.3e",
"name": [
"Department of Mechanical Engineering, The University of British Columbia, Vancouver, BC, Canada"
],
"type": "Organization"
},
"familyName": "Keleshteri",
"givenName": "M. M.",
"id": "sg:person.015671455703.21",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015671455703.21"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Civil Engineering, The University of British Columbia, Vancouver, BC, Canada",
"id": "http://www.grid.ac/institutes/grid.17091.3e",
"name": [
"Department of Mechanical Engineering, The University of British Columbia, Vancouver, BC, Canada",
"Department of Civil Engineering, The University of British Columbia, Vancouver, BC, Canada"
],
"type": "Organization"
},
"familyName": "Jelovica",
"givenName": "J.",
"id": "sg:person.012627251517.78",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012627251517.78"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/s00366-020-01068-x",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1128101547",
"https://doi.org/10.1007/s00366-020-01068-x"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00366-020-01056-1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1128222417",
"https://doi.org/10.1007/s00366-020-01056-1"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10483-021-2725-7",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1138180689",
"https://doi.org/10.1007/s10483-021-2725-7"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1140/epjp/s13360-021-01632-4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1138697848",
"https://doi.org/10.1140/epjp/s13360-021-01632-4"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s11012-016-0432-0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1038888535",
"https://doi.org/10.1007/s11012-016-0432-0"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00366-021-01303-z",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1135145231",
"https://doi.org/10.1007/s00366-021-01303-z"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00366-019-00931-w",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1124213301",
"https://doi.org/10.1007/s00366-019-00931-w"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00366-020-01023-w",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1126889716",
"https://doi.org/10.1007/s00366-020-01023-w"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00366-020-01182-w",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1131360900",
"https://doi.org/10.1007/s00366-020-01182-w"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf00367582",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1035295792",
"https://doi.org/10.1007/bf00367582"
],
"type": "CreativeWork"
}
],
"datePublished": "2021-12-02",
"datePublishedReg": "2021-12-02",
"description": "This paper presents nonlinear vibration behavior of shear deformable bidirectional porous beams with non-uniform porosity distribution. A new porosity distributions are proposed to maximize natural frequencies of the porous beam. It is assumed that closed-cell voids are distributed along the thickness and length of the beam. Hamilton principle is used to derive nonlinear governing equations using Reddy beam theory considering von Karman geometrical nonlinearity. Generalized differential quadrature method, harmonic balance approach along with the Picard iterative approach are used to discretize and solve the nonlinear dynamic equations. The variation of nonlinear frequency versus the vibration amplitude is highlighted considering various influential factors such as geometrical parameters, porosity distributions, beam theories and boundary conditions. It is shown that the newly defined porosity distribution can increase the frequencies in comparison to the conventional porosity distribution. Comparing beams of the same weight shows that porosities near the center of the beam further increases frequencies in comparison to the other porosity distributions. Moreover, bidirectional porosity increases the frequencies in comparison to the unidirectional porosity. Frequencies of the bidirectional porous Reddy beam depend not only on the bending stiffness, as in the case of unidirectional porous beam, but also on the first derivative of the bending stiffness.",
"genre": "article",
"id": "sg:pub.10.1007/s00366-021-01553-x",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1041785",
"issn": [
"0177-0667",
"1435-5663"
],
"name": "Engineering with Computers",
"publisher": "Springer Nature",
"type": "Periodical"
}
],
"keywords": [
"porous beams",
"beam theory",
"Reddy beam theory",
"nonlinear dynamic equations",
"nonlinear vibration analysis",
"differential quadrature method",
"harmonic balance approach",
"porosity distribution",
"Reddy beam",
"von Karman geometrical nonlinearity",
"Hamilton\u2019s principle",
"quadrature method",
"nonlinear frequency",
"dynamic equations",
"non-uniform porosity distribution",
"boundary conditions",
"vibration analysis",
"first derivative",
"vibration behavior",
"geometrical nonlinearity",
"iterative approach",
"natural frequencies",
"equations",
"vibration amplitude",
"beam",
"geometrical parameters",
"theory",
"porosity",
"balance approach",
"stiffness",
"nonlinearity",
"distribution",
"approach",
"parameters",
"same weight",
"frequency",
"thickness",
"voids",
"amplitude",
"influential factors",
"principles",
"comparison",
"derivatives",
"behavior",
"conditions",
"cases",
"method",
"length",
"variation",
"analysis",
"center",
"weight",
"factors",
"paper"
],
"name": "Nonlinear vibration analysis of bidirectional porous beams",
"pagination": "1-17",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1143575733"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s00366-021-01553-x"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s00366-021-01553-x",
"https://app.dimensions.ai/details/publication/pub.1143575733"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-10T10:31",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_916.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s00366-021-01553-x"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00366-021-01553-x'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00366-021-01553-x'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00366-021-01553-x'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00366-021-01553-x'
This table displays all metadata directly associated to this object as RDF triples.
155 TRIPLES
22 PREDICATES
87 URIs
69 LITERALS
4 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/s00366-021-01553-x | schema:about | anzsrc-for:01 |
2 | ″ | ″ | anzsrc-for:0101 |
3 | ″ | schema:author | Nc7132e47e0e14b74bdb6062c1d936449 |
4 | ″ | schema:citation | sg:pub.10.1007/bf00367582 |
5 | ″ | ″ | sg:pub.10.1007/s00366-019-00931-w |
6 | ″ | ″ | sg:pub.10.1007/s00366-020-01023-w |
7 | ″ | ″ | sg:pub.10.1007/s00366-020-01056-1 |
8 | ″ | ″ | sg:pub.10.1007/s00366-020-01068-x |
9 | ″ | ″ | sg:pub.10.1007/s00366-020-01182-w |
10 | ″ | ″ | sg:pub.10.1007/s00366-021-01303-z |
11 | ″ | ″ | sg:pub.10.1007/s10483-021-2725-7 |
12 | ″ | ″ | sg:pub.10.1007/s11012-016-0432-0 |
13 | ″ | ″ | sg:pub.10.1140/epjp/s13360-021-01632-4 |
14 | ″ | schema:datePublished | 2021-12-02 |
15 | ″ | schema:datePublishedReg | 2021-12-02 |
16 | ″ | schema:description | This paper presents nonlinear vibration behavior of shear deformable bidirectional porous beams with non-uniform porosity distribution. A new porosity distributions are proposed to maximize natural frequencies of the porous beam. It is assumed that closed-cell voids are distributed along the thickness and length of the beam. Hamilton principle is used to derive nonlinear governing equations using Reddy beam theory considering von Karman geometrical nonlinearity. Generalized differential quadrature method, harmonic balance approach along with the Picard iterative approach are used to discretize and solve the nonlinear dynamic equations. The variation of nonlinear frequency versus the vibration amplitude is highlighted considering various influential factors such as geometrical parameters, porosity distributions, beam theories and boundary conditions. It is shown that the newly defined porosity distribution can increase the frequencies in comparison to the conventional porosity distribution. Comparing beams of the same weight shows that porosities near the center of the beam further increases frequencies in comparison to the other porosity distributions. Moreover, bidirectional porosity increases the frequencies in comparison to the unidirectional porosity. Frequencies of the bidirectional porous Reddy beam depend not only on the bending stiffness, as in the case of unidirectional porous beam, but also on the first derivative of the bending stiffness. |
17 | ″ | schema:genre | article |
18 | ″ | schema:inLanguage | en |
19 | ″ | schema:isAccessibleForFree | false |
20 | ″ | schema:isPartOf | sg:journal.1041785 |
21 | ″ | schema:keywords | Hamilton’s principle |
22 | ″ | ″ | Reddy beam |
23 | ″ | ″ | Reddy beam theory |
24 | ″ | ″ | amplitude |
25 | ″ | ″ | analysis |
26 | ″ | ″ | approach |
27 | ″ | ″ | balance approach |
28 | ″ | ″ | beam |
29 | ″ | ″ | beam theory |
30 | ″ | ″ | behavior |
31 | ″ | ″ | boundary conditions |
32 | ″ | ″ | cases |
33 | ″ | ″ | center |
34 | ″ | ″ | comparison |
35 | ″ | ″ | conditions |
36 | ″ | ″ | derivatives |
37 | ″ | ″ | differential quadrature method |
38 | ″ | ″ | distribution |
39 | ″ | ″ | dynamic equations |
40 | ″ | ″ | equations |
41 | ″ | ″ | factors |
42 | ″ | ″ | first derivative |
43 | ″ | ″ | frequency |
44 | ″ | ″ | geometrical nonlinearity |
45 | ″ | ″ | geometrical parameters |
46 | ″ | ″ | harmonic balance approach |
47 | ″ | ″ | influential factors |
48 | ″ | ″ | iterative approach |
49 | ″ | ″ | length |
50 | ″ | ″ | method |
51 | ″ | ″ | natural frequencies |
52 | ″ | ″ | non-uniform porosity distribution |
53 | ″ | ″ | nonlinear dynamic equations |
54 | ″ | ″ | nonlinear frequency |
55 | ″ | ″ | nonlinear vibration analysis |
56 | ″ | ″ | nonlinearity |
57 | ″ | ″ | paper |
58 | ″ | ″ | parameters |
59 | ″ | ″ | porosity |
60 | ″ | ″ | porosity distribution |
61 | ″ | ″ | porous beams |
62 | ″ | ″ | principles |
63 | ″ | ″ | quadrature method |
64 | ″ | ″ | same weight |
65 | ″ | ″ | stiffness |
66 | ″ | ″ | theory |
67 | ″ | ″ | thickness |
68 | ″ | ″ | variation |
69 | ″ | ″ | vibration amplitude |
70 | ″ | ″ | vibration analysis |
71 | ″ | ″ | vibration behavior |
72 | ″ | ″ | voids |
73 | ″ | ″ | von Karman geometrical nonlinearity |
74 | ″ | ″ | weight |
75 | ″ | schema:name | Nonlinear vibration analysis of bidirectional porous beams |
76 | ″ | schema:pagination | 1-17 |
77 | ″ | schema:productId | N7150b6cb2c5544eb81cb25962137af4e |
78 | ″ | ″ | Nd896a18b297241ae96a45b593aa8287c |
79 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1143575733 |
80 | ″ | ″ | https://doi.org/10.1007/s00366-021-01553-x |
81 | ″ | schema:sdDatePublished | 2022-05-10T10:31 |
82 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
83 | ″ | schema:sdPublisher | N84768b37663c4c8ab5064181e155b24d |
84 | ″ | schema:url | https://doi.org/10.1007/s00366-021-01553-x |
85 | ″ | sgo:license | sg:explorer/license/ |
86 | ″ | sgo:sdDataset | articles |
87 | ″ | rdf:type | schema:ScholarlyArticle |
88 | N7150b6cb2c5544eb81cb25962137af4e | schema:name | dimensions_id |
89 | ″ | schema:value | pub.1143575733 |
90 | ″ | rdf:type | schema:PropertyValue |
91 | N84768b37663c4c8ab5064181e155b24d | schema:name | Springer Nature - SN SciGraph project |
92 | ″ | rdf:type | schema:Organization |
93 | Nc7132e47e0e14b74bdb6062c1d936449 | rdf:first | sg:person.015671455703.21 |
94 | ″ | rdf:rest | Nce8b4fb9937946b28aec3ec08157bbfa |
95 | Nce8b4fb9937946b28aec3ec08157bbfa | rdf:first | sg:person.012627251517.78 |
96 | ″ | rdf:rest | rdf:nil |
97 | Nd896a18b297241ae96a45b593aa8287c | schema:name | doi |
98 | ″ | schema:value | 10.1007/s00366-021-01553-x |
99 | ″ | rdf:type | schema:PropertyValue |
100 | anzsrc-for:01 | schema:inDefinedTermSet | anzsrc-for: |
101 | ″ | schema:name | Mathematical Sciences |
102 | ″ | rdf:type | schema:DefinedTerm |
103 | anzsrc-for:0101 | schema:inDefinedTermSet | anzsrc-for: |
104 | ″ | schema:name | Pure Mathematics |
105 | ″ | rdf:type | schema:DefinedTerm |
106 | sg:journal.1041785 | schema:issn | 0177-0667 |
107 | ″ | ″ | 1435-5663 |
108 | ″ | schema:name | Engineering with Computers |
109 | ″ | schema:publisher | Springer Nature |
110 | ″ | rdf:type | schema:Periodical |
111 | sg:person.012627251517.78 | schema:affiliation | grid-institutes:grid.17091.3e |
112 | ″ | schema:familyName | Jelovica |
113 | ″ | schema:givenName | J. |
114 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012627251517.78 |
115 | ″ | rdf:type | schema:Person |
116 | sg:person.015671455703.21 | schema:affiliation | grid-institutes:grid.17091.3e |
117 | ″ | schema:familyName | Keleshteri |
118 | ″ | schema:givenName | M. M. |
119 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015671455703.21 |
120 | ″ | rdf:type | schema:Person |
121 | sg:pub.10.1007/bf00367582 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1035295792 |
122 | ″ | ″ | https://doi.org/10.1007/bf00367582 |
123 | ″ | rdf:type | schema:CreativeWork |
124 | sg:pub.10.1007/s00366-019-00931-w | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1124213301 |
125 | ″ | ″ | https://doi.org/10.1007/s00366-019-00931-w |
126 | ″ | rdf:type | schema:CreativeWork |
127 | sg:pub.10.1007/s00366-020-01023-w | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1126889716 |
128 | ″ | ″ | https://doi.org/10.1007/s00366-020-01023-w |
129 | ″ | rdf:type | schema:CreativeWork |
130 | sg:pub.10.1007/s00366-020-01056-1 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1128222417 |
131 | ″ | ″ | https://doi.org/10.1007/s00366-020-01056-1 |
132 | ″ | rdf:type | schema:CreativeWork |
133 | sg:pub.10.1007/s00366-020-01068-x | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1128101547 |
134 | ″ | ″ | https://doi.org/10.1007/s00366-020-01068-x |
135 | ″ | rdf:type | schema:CreativeWork |
136 | sg:pub.10.1007/s00366-020-01182-w | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1131360900 |
137 | ″ | ″ | https://doi.org/10.1007/s00366-020-01182-w |
138 | ″ | rdf:type | schema:CreativeWork |
139 | sg:pub.10.1007/s00366-021-01303-z | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1135145231 |
140 | ″ | ″ | https://doi.org/10.1007/s00366-021-01303-z |
141 | ″ | rdf:type | schema:CreativeWork |
142 | sg:pub.10.1007/s10483-021-2725-7 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1138180689 |
143 | ″ | ″ | https://doi.org/10.1007/s10483-021-2725-7 |
144 | ″ | rdf:type | schema:CreativeWork |
145 | sg:pub.10.1007/s11012-016-0432-0 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1038888535 |
146 | ″ | ″ | https://doi.org/10.1007/s11012-016-0432-0 |
147 | ″ | rdf:type | schema:CreativeWork |
148 | sg:pub.10.1140/epjp/s13360-021-01632-4 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1138697848 |
149 | ″ | ″ | https://doi.org/10.1140/epjp/s13360-021-01632-4 |
150 | ″ | rdf:type | schema:CreativeWork |
151 | grid-institutes:grid.17091.3e | schema:alternateName | Department of Civil Engineering, The University of British Columbia, Vancouver, BC, Canada |
152 | ″ | ″ | Department of Mechanical Engineering, The University of British Columbia, Vancouver, BC, Canada |
153 | ″ | schema:name | Department of Civil Engineering, The University of British Columbia, Vancouver, BC, Canada |
154 | ″ | ″ | Department of Mechanical Engineering, The University of British Columbia, Vancouver, BC, Canada |
155 | ″ | rdf:type | schema:Organization |