Ontology type: schema:ScholarlyArticle
2021-11-13
AUTHORSFarzad Ebrahimi, Mehrdad Farajzadeh Ahari
ABSTRACTThe current study aims to analyze the vibrational behavior of a three-layered composite sandwich of magnetostrictive nanoplate integrated with functionally graded material facesheets. The core layer is supposed to be consisted of Terfenol-D and the top and the bottom plies are supposed to be from functionally graded material. To consider the small-scale effect, the Eringen’s nonlocal theory is utilized. On the other hand, kinematic relations of the nanoplate, i.e. rested on a Winkler–Pasternak medium, are expressed based on the first-order shear deformation theory. The governing equations are derived by employing the Hamilton’s principle and solved analytically by applying the Navier’s method for the simply supported boundary condition. The effects of various parameters such as nonlocal parameter, Winkler and Pasternak foundation, gradient index, feedback gain, and aspect ratio on the dynamic behaviors of the system are monitored in detail. To exhibit the accuracy and validity of the present study, our results are compared to those available in the literature. The results indicate when the thickness of the magnetostrictive layer increase, natural frequencies also increase. The results of the present study can be utilized in designing mechanical nanosensors, actuators, vibration cancellation, and smart nanovalves in injectors. More... »
PAGES1-15
http://scigraph.springernature.com/pub.10.1007/s00366-021-01539-9
DOIhttp://dx.doi.org/10.1007/s00366-021-01539-9
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1142564194
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Information and Computing Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Applied Mathematics",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Artificial Intelligence and Image Processing",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0802",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Computation Theory and Mathematics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Department of Mechanical Engineering, Faculty of Engineering, Imam Khomeini International University, Qazvin, Iran",
"id": "http://www.grid.ac/institutes/grid.411537.5",
"name": [
"Department of Mechanical Engineering, Faculty of Engineering, Imam Khomeini International University, Qazvin, Iran"
],
"type": "Organization"
},
"familyName": "Ebrahimi",
"givenName": "Farzad",
"id": "sg:person.016572237120.78",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016572237120.78"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Mechanical Engineering, Faculty of Engineering, Imam Khomeini International University, Qazvin, Iran",
"id": "http://www.grid.ac/institutes/grid.411537.5",
"name": [
"Department of Mechanical Engineering, Faculty of Engineering, Imam Khomeini International University, Qazvin, Iran"
],
"type": "Organization"
},
"familyName": "Ahari",
"givenName": "Mehrdad Farajzadeh",
"id": "sg:person.014047577233.96",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014047577233.96"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1140/epjp/s13360-020-00712-1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1130668985",
"https://doi.org/10.1140/epjp/s13360-020-00712-1"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1140/epjp/i2018-11910-7",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1101382914",
"https://doi.org/10.1140/epjp/i2018-11910-7"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00366-019-00864-4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1121519659",
"https://doi.org/10.1007/s00366-019-00864-4"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00366-020-01107-7",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1129605641",
"https://doi.org/10.1007/s00366-020-01107-7"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00419-020-01705-3",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1127987105",
"https://doi.org/10.1007/s00419-020-01705-3"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s40430-020-02317-2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1126788474",
"https://doi.org/10.1007/s40430-020-02317-2"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00542-020-04757-1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1125485936",
"https://doi.org/10.1007/s00542-020-04757-1"
],
"type": "CreativeWork"
}
],
"datePublished": "2021-11-13",
"datePublishedReg": "2021-11-13",
"description": "The current study aims to analyze the vibrational behavior of a three-layered composite sandwich of magnetostrictive nanoplate integrated with functionally graded material facesheets. The core layer is supposed to be consisted of Terfenol-D and the top and the bottom plies are supposed to be from functionally graded material. To consider the small-scale effect, the Eringen\u2019s nonlocal theory is utilized. On the other hand, kinematic relations of the nanoplate, i.e. rested on a Winkler\u2013Pasternak medium, are expressed based on the first-order shear deformation theory. The governing equations are derived by employing the Hamilton\u2019s principle and solved analytically by applying the Navier\u2019s method for the simply supported boundary condition. The effects of various parameters such as nonlocal parameter, Winkler and Pasternak foundation, gradient index, feedback gain, and aspect ratio on the dynamic behaviors of the system are monitored in detail. To exhibit the accuracy and validity of the present study, our results are compared to those available in the literature. The results indicate when the thickness of the magnetostrictive layer increase, natural frequencies also increase. The results of the present study can be utilized in designing mechanical nanosensors, actuators, vibration cancellation, and smart nanovalves in injectors.",
"genre": "article",
"id": "sg:pub.10.1007/s00366-021-01539-9",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1041785",
"issn": [
"0177-0667",
"1435-5663"
],
"name": "Engineering with Computers",
"publisher": "Springer Nature",
"type": "Periodical"
}
],
"keywords": [
"first-order shear deformation theory",
"shear deformation theory",
"Winkler-Pasternak medium",
"Eringen\u2019s nonlocal theory",
"nonlocal theory",
"small-scale effects",
"composite sandwich",
"vibration cancellation",
"Pasternak foundation",
"deformation theory",
"Navier method",
"Hamilton\u2019s principle",
"nonlocal parameter",
"natural frequencies",
"smart nanovalves",
"core layer",
"bottom plies",
"layer increases",
"mechanical nanosensor",
"kinematic relations",
"active control",
"vibrational behavior",
"dynamic behavior",
"facesheets",
"boundary conditions",
"gradient index",
"feedback gains",
"nanoplates",
"system behavior",
"Terfenol",
"plies",
"actuators",
"injector",
"behavior",
"parameters",
"thickness",
"layer",
"materials",
"theory",
"nanosensors",
"sandwich",
"method",
"Winkler",
"equations",
"results",
"top",
"nanovalves",
"accuracy",
"effect",
"cancellation",
"principles",
"ratio",
"conditions",
"system",
"frequency",
"detail",
"gain",
"present study",
"control",
"increase",
"medium",
"foundation",
"study",
"validity",
"hand",
"current study",
"relation",
"index",
"literature"
],
"name": "Magnetostriction-assisted active control of the multi-layered nanoplates: effect of the porous functionally graded facesheets on the system\u2019s behavior",
"pagination": "1-15",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1142564194"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s00366-021-01539-9"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s00366-021-01539-9",
"https://app.dimensions.ai/details/publication/pub.1142564194"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-10T10:33",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_910.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s00366-021-01539-9"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00366-021-01539-9'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00366-021-01539-9'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00366-021-01539-9'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00366-021-01539-9'
This table displays all metadata directly associated to this object as RDF triples.
168 TRIPLES
22 PREDICATES
102 URIs
84 LITERALS
4 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/s00366-021-01539-9 | schema:about | anzsrc-for:01 |
2 | ″ | ″ | anzsrc-for:0102 |
3 | ″ | ″ | anzsrc-for:08 |
4 | ″ | ″ | anzsrc-for:0801 |
5 | ″ | ″ | anzsrc-for:0802 |
6 | ″ | schema:author | N98e717071def4c089698e33ab8defb14 |
7 | ″ | schema:citation | sg:pub.10.1007/s00366-019-00864-4 |
8 | ″ | ″ | sg:pub.10.1007/s00366-020-01107-7 |
9 | ″ | ″ | sg:pub.10.1007/s00419-020-01705-3 |
10 | ″ | ″ | sg:pub.10.1007/s00542-020-04757-1 |
11 | ″ | ″ | sg:pub.10.1007/s40430-020-02317-2 |
12 | ″ | ″ | sg:pub.10.1140/epjp/i2018-11910-7 |
13 | ″ | ″ | sg:pub.10.1140/epjp/s13360-020-00712-1 |
14 | ″ | schema:datePublished | 2021-11-13 |
15 | ″ | schema:datePublishedReg | 2021-11-13 |
16 | ″ | schema:description | The current study aims to analyze the vibrational behavior of a three-layered composite sandwich of magnetostrictive nanoplate integrated with functionally graded material facesheets. The core layer is supposed to be consisted of Terfenol-D and the top and the bottom plies are supposed to be from functionally graded material. To consider the small-scale effect, the Eringen’s nonlocal theory is utilized. On the other hand, kinematic relations of the nanoplate, i.e. rested on a Winkler–Pasternak medium, are expressed based on the first-order shear deformation theory. The governing equations are derived by employing the Hamilton’s principle and solved analytically by applying the Navier’s method for the simply supported boundary condition. The effects of various parameters such as nonlocal parameter, Winkler and Pasternak foundation, gradient index, feedback gain, and aspect ratio on the dynamic behaviors of the system are monitored in detail. To exhibit the accuracy and validity of the present study, our results are compared to those available in the literature. The results indicate when the thickness of the magnetostrictive layer increase, natural frequencies also increase. The results of the present study can be utilized in designing mechanical nanosensors, actuators, vibration cancellation, and smart nanovalves in injectors. |
17 | ″ | schema:genre | article |
18 | ″ | schema:inLanguage | en |
19 | ″ | schema:isAccessibleForFree | false |
20 | ″ | schema:isPartOf | sg:journal.1041785 |
21 | ″ | schema:keywords | Eringen’s nonlocal theory |
22 | ″ | ″ | Hamilton’s principle |
23 | ″ | ″ | Navier method |
24 | ″ | ″ | Pasternak foundation |
25 | ″ | ″ | Terfenol |
26 | ″ | ″ | Winkler |
27 | ″ | ″ | Winkler-Pasternak medium |
28 | ″ | ″ | accuracy |
29 | ″ | ″ | active control |
30 | ″ | ″ | actuators |
31 | ″ | ″ | behavior |
32 | ″ | ″ | bottom plies |
33 | ″ | ″ | boundary conditions |
34 | ″ | ″ | cancellation |
35 | ″ | ″ | composite sandwich |
36 | ″ | ″ | conditions |
37 | ″ | ″ | control |
38 | ″ | ″ | core layer |
39 | ″ | ″ | current study |
40 | ″ | ″ | deformation theory |
41 | ″ | ″ | detail |
42 | ″ | ″ | dynamic behavior |
43 | ″ | ″ | effect |
44 | ″ | ″ | equations |
45 | ″ | ″ | facesheets |
46 | ″ | ″ | feedback gains |
47 | ″ | ″ | first-order shear deformation theory |
48 | ″ | ″ | foundation |
49 | ″ | ″ | frequency |
50 | ″ | ″ | gain |
51 | ″ | ″ | gradient index |
52 | ″ | ″ | hand |
53 | ″ | ″ | increase |
54 | ″ | ″ | index |
55 | ″ | ″ | injector |
56 | ″ | ″ | kinematic relations |
57 | ″ | ″ | layer |
58 | ″ | ″ | layer increases |
59 | ″ | ″ | literature |
60 | ″ | ″ | materials |
61 | ″ | ″ | mechanical nanosensor |
62 | ″ | ″ | medium |
63 | ″ | ″ | method |
64 | ″ | ″ | nanoplates |
65 | ″ | ″ | nanosensors |
66 | ″ | ″ | nanovalves |
67 | ″ | ″ | natural frequencies |
68 | ″ | ″ | nonlocal parameter |
69 | ″ | ″ | nonlocal theory |
70 | ″ | ″ | parameters |
71 | ″ | ″ | plies |
72 | ″ | ″ | present study |
73 | ″ | ″ | principles |
74 | ″ | ″ | ratio |
75 | ″ | ″ | relation |
76 | ″ | ″ | results |
77 | ″ | ″ | sandwich |
78 | ″ | ″ | shear deformation theory |
79 | ″ | ″ | small-scale effects |
80 | ″ | ″ | smart nanovalves |
81 | ″ | ″ | study |
82 | ″ | ″ | system |
83 | ″ | ″ | system behavior |
84 | ″ | ″ | theory |
85 | ″ | ″ | thickness |
86 | ″ | ″ | top |
87 | ″ | ″ | validity |
88 | ″ | ″ | vibration cancellation |
89 | ″ | ″ | vibrational behavior |
90 | ″ | schema:name | Magnetostriction-assisted active control of the multi-layered nanoplates: effect of the porous functionally graded facesheets on the system’s behavior |
91 | ″ | schema:pagination | 1-15 |
92 | ″ | schema:productId | Nc22417d846d649fdbfb270e79edf6f6a |
93 | ″ | ″ | Ndf166a817b814f33be191294b1284565 |
94 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1142564194 |
95 | ″ | ″ | https://doi.org/10.1007/s00366-021-01539-9 |
96 | ″ | schema:sdDatePublished | 2022-05-10T10:33 |
97 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
98 | ″ | schema:sdPublisher | N4371eca98cad4b43a130b450c2803491 |
99 | ″ | schema:url | https://doi.org/10.1007/s00366-021-01539-9 |
100 | ″ | sgo:license | sg:explorer/license/ |
101 | ″ | sgo:sdDataset | articles |
102 | ″ | rdf:type | schema:ScholarlyArticle |
103 | N4371eca98cad4b43a130b450c2803491 | schema:name | Springer Nature - SN SciGraph project |
104 | ″ | rdf:type | schema:Organization |
105 | N6099a0d4c3264617ae1e365725e3df13 | rdf:first | sg:person.014047577233.96 |
106 | ″ | rdf:rest | rdf:nil |
107 | N98e717071def4c089698e33ab8defb14 | rdf:first | sg:person.016572237120.78 |
108 | ″ | rdf:rest | N6099a0d4c3264617ae1e365725e3df13 |
109 | Nc22417d846d649fdbfb270e79edf6f6a | schema:name | dimensions_id |
110 | ″ | schema:value | pub.1142564194 |
111 | ″ | rdf:type | schema:PropertyValue |
112 | Ndf166a817b814f33be191294b1284565 | schema:name | doi |
113 | ″ | schema:value | 10.1007/s00366-021-01539-9 |
114 | ″ | rdf:type | schema:PropertyValue |
115 | anzsrc-for:01 | schema:inDefinedTermSet | anzsrc-for: |
116 | ″ | schema:name | Mathematical Sciences |
117 | ″ | rdf:type | schema:DefinedTerm |
118 | anzsrc-for:0102 | schema:inDefinedTermSet | anzsrc-for: |
119 | ″ | schema:name | Applied Mathematics |
120 | ″ | rdf:type | schema:DefinedTerm |
121 | anzsrc-for:08 | schema:inDefinedTermSet | anzsrc-for: |
122 | ″ | schema:name | Information and Computing Sciences |
123 | ″ | rdf:type | schema:DefinedTerm |
124 | anzsrc-for:0801 | schema:inDefinedTermSet | anzsrc-for: |
125 | ″ | schema:name | Artificial Intelligence and Image Processing |
126 | ″ | rdf:type | schema:DefinedTerm |
127 | anzsrc-for:0802 | schema:inDefinedTermSet | anzsrc-for: |
128 | ″ | schema:name | Computation Theory and Mathematics |
129 | ″ | rdf:type | schema:DefinedTerm |
130 | sg:journal.1041785 | schema:issn | 0177-0667 |
131 | ″ | ″ | 1435-5663 |
132 | ″ | schema:name | Engineering with Computers |
133 | ″ | schema:publisher | Springer Nature |
134 | ″ | rdf:type | schema:Periodical |
135 | sg:person.014047577233.96 | schema:affiliation | grid-institutes:grid.411537.5 |
136 | ″ | schema:familyName | Ahari |
137 | ″ | schema:givenName | Mehrdad Farajzadeh |
138 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014047577233.96 |
139 | ″ | rdf:type | schema:Person |
140 | sg:person.016572237120.78 | schema:affiliation | grid-institutes:grid.411537.5 |
141 | ″ | schema:familyName | Ebrahimi |
142 | ″ | schema:givenName | Farzad |
143 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016572237120.78 |
144 | ″ | rdf:type | schema:Person |
145 | sg:pub.10.1007/s00366-019-00864-4 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1121519659 |
146 | ″ | ″ | https://doi.org/10.1007/s00366-019-00864-4 |
147 | ″ | rdf:type | schema:CreativeWork |
148 | sg:pub.10.1007/s00366-020-01107-7 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1129605641 |
149 | ″ | ″ | https://doi.org/10.1007/s00366-020-01107-7 |
150 | ″ | rdf:type | schema:CreativeWork |
151 | sg:pub.10.1007/s00419-020-01705-3 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1127987105 |
152 | ″ | ″ | https://doi.org/10.1007/s00419-020-01705-3 |
153 | ″ | rdf:type | schema:CreativeWork |
154 | sg:pub.10.1007/s00542-020-04757-1 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1125485936 |
155 | ″ | ″ | https://doi.org/10.1007/s00542-020-04757-1 |
156 | ″ | rdf:type | schema:CreativeWork |
157 | sg:pub.10.1007/s40430-020-02317-2 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1126788474 |
158 | ″ | ″ | https://doi.org/10.1007/s40430-020-02317-2 |
159 | ″ | rdf:type | schema:CreativeWork |
160 | sg:pub.10.1140/epjp/i2018-11910-7 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1101382914 |
161 | ″ | ″ | https://doi.org/10.1140/epjp/i2018-11910-7 |
162 | ″ | rdf:type | schema:CreativeWork |
163 | sg:pub.10.1140/epjp/s13360-020-00712-1 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1130668985 |
164 | ″ | ″ | https://doi.org/10.1140/epjp/s13360-020-00712-1 |
165 | ″ | rdf:type | schema:CreativeWork |
166 | grid-institutes:grid.411537.5 | schema:alternateName | Department of Mechanical Engineering, Faculty of Engineering, Imam Khomeini International University, Qazvin, Iran |
167 | ″ | schema:name | Department of Mechanical Engineering, Faculty of Engineering, Imam Khomeini International University, Qazvin, Iran |
168 | ″ | rdf:type | schema:Organization |