Generalized Gegenbauer–Humbert wavelets for solving fractional partial differential equations View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2021-11-03

AUTHORS

Jumana H. S. Alkhalissi, Ibrahim Emiroglu, Mustafa Bayram, Aydin Secer, Fatih Tasci

ABSTRACT

This article develops a method based on the generalized Gegenbauer–Humbert wavelets in concert with their operational matrices of fractional integration to deal with the fractional partial differential equations and find the approximate solutions of it. The goal is to show that the proposed method is appropriate for boundary and initial-boundary problems even though it is generalized form. The convergence of the method under study is investigated. The numerical results gained by the proposed method are considered and compared with other methods, to establish the effectiveness and accuracy. More... »

PAGES

1-12

References to SciGraph publications

  • 2004-01-28. Mathematical justification of a nonlinear integro-differential equation for the propagation of spherical flames in ANNALI DI MATEMATICA PURA ED APPLICATA (1923 -)
  • 2021-01-02. Sensitivity analysis of emerging parameters in the presence of thermal radiation on magnetohydrodynamic nanofluids via wavelets in ENGINEERING WITH COMPUTERS
  • 2020-08-13. Wavelet strategy for flow and heat transfer in CNT-water based fluid with asymmetric variable rectangular porous channel in ENGINEERING WITH COMPUTERS
  • 1997. Fractional Calculus in FRACTALS AND FRACTIONAL CALCULUS IN CONTINUUM MECHANICS
  • 2018-09-26. New Scale-3 Haar Wavelets Algorithm for Numerical Simulation of Second Order Ordinary Differential Equations in PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES, INDIA SECTION A: PHYSICAL SCIENCES
  • 2019-07-24. Some expansions for a class of generalized Humbert matrix polynomials in REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS, FÍSICAS Y NATURALES. SERIE A. MATEMÁTICAS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00366-021-01532-2

    DOI

    http://dx.doi.org/10.1007/s00366-021-01532-2

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1142387717


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Numerical and Computational Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Mathematical Engineering, Yildiz Technical University, Istanbul, Turkey", 
              "id": "http://www.grid.ac/institutes/grid.38575.3c", 
              "name": [
                "Department of Mathematical Engineering, Yildiz Technical University, Istanbul, Turkey"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Alkhalissi", 
            "givenName": "Jumana H. S.", 
            "id": "sg:person.010456143003.40", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010456143003.40"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Mathematical Engineering, Yildiz Technical University, Istanbul, Turkey", 
              "id": "http://www.grid.ac/institutes/grid.38575.3c", 
              "name": [
                "Department of Mathematical Engineering, Yildiz Technical University, Istanbul, Turkey"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Emiroglu", 
            "givenName": "Ibrahim", 
            "id": "sg:person.012762464217.38", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012762464217.38"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Computer Engineering, Biruni University, Istanbul, Turkey", 
              "id": "http://www.grid.ac/institutes/grid.488405.5", 
              "name": [
                "Department of Computer Engineering, Biruni University, Istanbul, Turkey"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bayram", 
            "givenName": "Mustafa", 
            "id": "sg:person.012077030243.23", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012077030243.23"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Mathematical Engineering, Yildiz Technical University, Istanbul, Turkey", 
              "id": "http://www.grid.ac/institutes/grid.38575.3c", 
              "name": [
                "Department of Mathematical Engineering, Yildiz Technical University, Istanbul, Turkey"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Secer", 
            "givenName": "Aydin", 
            "id": "sg:person.015265711011.29", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015265711011.29"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Mathematical Engineering, Yildiz Technical University, Istanbul, Turkey", 
              "id": "http://www.grid.ac/institutes/grid.38575.3c", 
              "name": [
                "Department of Mathematical Engineering, Yildiz Technical University, Istanbul, Turkey"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tasci", 
            "givenName": "Fatih", 
            "id": "sg:person.014677623347.03", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014677623347.03"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s00366-020-01221-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1134283657", 
              "https://doi.org/10.1007/s00366-020-01221-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-7091-2664-6_7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010203972", 
              "https://doi.org/10.1007/978-3-7091-2664-6_7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10231-003-0085-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023381125", 
              "https://doi.org/10.1007/s10231-003-0085-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00366-020-01139-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1130093304", 
              "https://doi.org/10.1007/s00366-020-01139-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s13398-019-00720-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1119790914", 
              "https://doi.org/10.1007/s13398-019-00720-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s40010-018-0538-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1107245299", 
              "https://doi.org/10.1007/s40010-018-0538-y"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2021-11-03", 
        "datePublishedReg": "2021-11-03", 
        "description": "This article develops a method based on the generalized Gegenbauer\u2013Humbert wavelets in concert with their operational matrices of fractional integration to deal with the fractional partial differential equations and find the approximate solutions of it. The goal is to show that the proposed method is appropriate for boundary and initial-boundary problems even though it is generalized form. The convergence of the method under study is investigated. The numerical results gained by the proposed method are considered and compared with other methods, to establish the effectiveness and accuracy.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s00366-021-01532-2", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1041785", 
            "issn": [
              "0177-0667", 
              "1435-5663"
            ], 
            "name": "Engineering with Computers", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }
        ], 
        "keywords": [
          "fractional partial differential equations", 
          "partial differential equations", 
          "differential equations", 
          "initial-boundary problem", 
          "operational matrix", 
          "approximate solution", 
          "fractional integration", 
          "numerical results", 
          "equations", 
          "convergence", 
          "wavelets", 
          "problem", 
          "solution", 
          "matrix", 
          "accuracy", 
          "effectiveness", 
          "form", 
          "results", 
          "integration", 
          "goal", 
          "article", 
          "study", 
          "concert", 
          "method"
        ], 
        "name": "Generalized Gegenbauer\u2013Humbert wavelets for solving fractional partial differential equations", 
        "pagination": "1-12", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1142387717"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00366-021-01532-2"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00366-021-01532-2", 
          "https://app.dimensions.ai/details/publication/pub.1142387717"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-05-20T07:39", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_908.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s00366-021-01532-2"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00366-021-01532-2'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00366-021-01532-2'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00366-021-01532-2'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00366-021-01532-2'


     

    This table displays all metadata directly associated to this object as RDF triples.

    131 TRIPLES      22 PREDICATES      52 URIs      38 LITERALS      4 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00366-021-01532-2 schema:about anzsrc-for:01
    2 anzsrc-for:0103
    3 schema:author N2ce26cb82a9740c8968a0ca7b3be7d1d
    4 schema:citation sg:pub.10.1007/978-3-7091-2664-6_7
    5 sg:pub.10.1007/s00366-020-01139-z
    6 sg:pub.10.1007/s00366-020-01221-6
    7 sg:pub.10.1007/s10231-003-0085-1
    8 sg:pub.10.1007/s13398-019-00720-6
    9 sg:pub.10.1007/s40010-018-0538-y
    10 schema:datePublished 2021-11-03
    11 schema:datePublishedReg 2021-11-03
    12 schema:description This article develops a method based on the generalized Gegenbauer–Humbert wavelets in concert with their operational matrices of fractional integration to deal with the fractional partial differential equations and find the approximate solutions of it. The goal is to show that the proposed method is appropriate for boundary and initial-boundary problems even though it is generalized form. The convergence of the method under study is investigated. The numerical results gained by the proposed method are considered and compared with other methods, to establish the effectiveness and accuracy.
    13 schema:genre article
    14 schema:inLanguage en
    15 schema:isAccessibleForFree false
    16 schema:isPartOf sg:journal.1041785
    17 schema:keywords accuracy
    18 approximate solution
    19 article
    20 concert
    21 convergence
    22 differential equations
    23 effectiveness
    24 equations
    25 form
    26 fractional integration
    27 fractional partial differential equations
    28 goal
    29 initial-boundary problem
    30 integration
    31 matrix
    32 method
    33 numerical results
    34 operational matrix
    35 partial differential equations
    36 problem
    37 results
    38 solution
    39 study
    40 wavelets
    41 schema:name Generalized Gegenbauer–Humbert wavelets for solving fractional partial differential equations
    42 schema:pagination 1-12
    43 schema:productId N6a7c224548b048e29e13736aa652d406
    44 Nc9157f06144246509f248b854059437f
    45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1142387717
    46 https://doi.org/10.1007/s00366-021-01532-2
    47 schema:sdDatePublished 2022-05-20T07:39
    48 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    49 schema:sdPublisher Nea24b6aeb9b44a798e0f19e0c19b10e6
    50 schema:url https://doi.org/10.1007/s00366-021-01532-2
    51 sgo:license sg:explorer/license/
    52 sgo:sdDataset articles
    53 rdf:type schema:ScholarlyArticle
    54 N1177bbdb45ee453cacc4537a78f2c82e rdf:first sg:person.012762464217.38
    55 rdf:rest N9400414b50ef46e19503291042eaa830
    56 N2ce26cb82a9740c8968a0ca7b3be7d1d rdf:first sg:person.010456143003.40
    57 rdf:rest N1177bbdb45ee453cacc4537a78f2c82e
    58 N69d8f09327d44b268ae3a11ceebfc2e2 rdf:first sg:person.014677623347.03
    59 rdf:rest rdf:nil
    60 N6a7c224548b048e29e13736aa652d406 schema:name dimensions_id
    61 schema:value pub.1142387717
    62 rdf:type schema:PropertyValue
    63 N9400414b50ef46e19503291042eaa830 rdf:first sg:person.012077030243.23
    64 rdf:rest Nd49650ece0c04d6ea04101bccdc991b3
    65 Nc9157f06144246509f248b854059437f schema:name doi
    66 schema:value 10.1007/s00366-021-01532-2
    67 rdf:type schema:PropertyValue
    68 Nd49650ece0c04d6ea04101bccdc991b3 rdf:first sg:person.015265711011.29
    69 rdf:rest N69d8f09327d44b268ae3a11ceebfc2e2
    70 Nea24b6aeb9b44a798e0f19e0c19b10e6 schema:name Springer Nature - SN SciGraph project
    71 rdf:type schema:Organization
    72 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    73 schema:name Mathematical Sciences
    74 rdf:type schema:DefinedTerm
    75 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
    76 schema:name Numerical and Computational Mathematics
    77 rdf:type schema:DefinedTerm
    78 sg:journal.1041785 schema:issn 0177-0667
    79 1435-5663
    80 schema:name Engineering with Computers
    81 schema:publisher Springer Nature
    82 rdf:type schema:Periodical
    83 sg:person.010456143003.40 schema:affiliation grid-institutes:grid.38575.3c
    84 schema:familyName Alkhalissi
    85 schema:givenName Jumana H. S.
    86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010456143003.40
    87 rdf:type schema:Person
    88 sg:person.012077030243.23 schema:affiliation grid-institutes:grid.488405.5
    89 schema:familyName Bayram
    90 schema:givenName Mustafa
    91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012077030243.23
    92 rdf:type schema:Person
    93 sg:person.012762464217.38 schema:affiliation grid-institutes:grid.38575.3c
    94 schema:familyName Emiroglu
    95 schema:givenName Ibrahim
    96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012762464217.38
    97 rdf:type schema:Person
    98 sg:person.014677623347.03 schema:affiliation grid-institutes:grid.38575.3c
    99 schema:familyName Tasci
    100 schema:givenName Fatih
    101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014677623347.03
    102 rdf:type schema:Person
    103 sg:person.015265711011.29 schema:affiliation grid-institutes:grid.38575.3c
    104 schema:familyName Secer
    105 schema:givenName Aydin
    106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015265711011.29
    107 rdf:type schema:Person
    108 sg:pub.10.1007/978-3-7091-2664-6_7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010203972
    109 https://doi.org/10.1007/978-3-7091-2664-6_7
    110 rdf:type schema:CreativeWork
    111 sg:pub.10.1007/s00366-020-01139-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1130093304
    112 https://doi.org/10.1007/s00366-020-01139-z
    113 rdf:type schema:CreativeWork
    114 sg:pub.10.1007/s00366-020-01221-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1134283657
    115 https://doi.org/10.1007/s00366-020-01221-6
    116 rdf:type schema:CreativeWork
    117 sg:pub.10.1007/s10231-003-0085-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023381125
    118 https://doi.org/10.1007/s10231-003-0085-1
    119 rdf:type schema:CreativeWork
    120 sg:pub.10.1007/s13398-019-00720-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1119790914
    121 https://doi.org/10.1007/s13398-019-00720-6
    122 rdf:type schema:CreativeWork
    123 sg:pub.10.1007/s40010-018-0538-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1107245299
    124 https://doi.org/10.1007/s40010-018-0538-y
    125 rdf:type schema:CreativeWork
    126 grid-institutes:grid.38575.3c schema:alternateName Department of Mathematical Engineering, Yildiz Technical University, Istanbul, Turkey
    127 schema:name Department of Mathematical Engineering, Yildiz Technical University, Istanbul, Turkey
    128 rdf:type schema:Organization
    129 grid-institutes:grid.488405.5 schema:alternateName Department of Computer Engineering, Biruni University, Istanbul, Turkey
    130 schema:name Department of Computer Engineering, Biruni University, Istanbul, Turkey
    131 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...