On the dynamics and wave propagation of reinforced composite nanosystem View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2021-11-29

AUTHORS

Xiaolan Lv, Shaochang Liu, Pinyi Wang, E. Mohammad-Rezaei Bidgoli, Mohammad Arefi

ABSTRACT

In this work, nonlocal dynamic formulation of a graphene nanoplatelets reinforced composite doubly curved micro/nano shell is presented based on Hamilton’s principle using a shear deformable model. The structure is composed of a honeycomb core integrated with graphene nanoplatelets reinforced face-sheets. The material properties of honeycomb core are computed using available formula in literature. Furthermore, material properties of composite reinforced face-sheets are assumed to vary along the thickness direction based on Halpin–Tsai micromechanical models and rule of mixture. The size-dependent governing equations of motion are derived through employing nonlocal equations. After verification of the formulation and solution procedure using a comparative study, the large parametric results are presented to discuss impact of main geometric, material and small scale parameters on the free vibration characteristics. As a main result of the present paper is this fact that the lowest frequencies are obtained for ϕ0=h0/l0=0.6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi_{0} = {{h_{0} } \mathord{\left/ {\vphantom {{h_{0} } {l_{0} }}} \right. \kern-\nulldelimiterspace} {l_{0} }} = 0.6$$\end{document}. It is concluded that with increase of ϕ0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi_{0}$$\end{document} from small values, the mass is increased more than increase of stiffness that leads to a decrease in frequencies unlike higher values of ϕ0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi_{0}$$\end{document}, in which an increase in structural stiffness is reached respect to a small increase in mass that leads to a main increase in frequencies. More... »

PAGES

1-21

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00366-021-01529-x

DOI

http://dx.doi.org/10.1007/s00366-021-01529-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1143437318


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0802", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Computation Theory and Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Functional Supersonic Room, Affiliated Hospital of Hebei University, 071000, Baoding, Hebei, China", 
          "id": "http://www.grid.ac/institutes/grid.459324.d", 
          "name": [
            "Functional Supersonic Room, Affiliated Hospital of Hebei University, 071000, Baoding, Hebei, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lv", 
        "givenName": "Xiaolan", 
        "id": "sg:person.010152570157.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010152570157.99"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Wuhu Electrical Machinery Co. Ltd, 241000, Wuhu, Anhui, China", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Wuhu Electrical Machinery Co. Ltd, 241000, Wuhu, Anhui, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Shaochang", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Electrical and Computer Engineering, University of Washington, 98195, Seattle, WA, USA", 
          "id": "http://www.grid.ac/institutes/grid.34477.33", 
          "name": [
            "Department of Electrical and Computer Engineering, University of Washington, 98195, Seattle, WA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Pinyi", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Solid Mechanic, Faculty of Mechanical Engineering, University of Kashan, Kashan, Iran", 
          "id": "http://www.grid.ac/institutes/grid.412057.5", 
          "name": [
            "Department of Solid Mechanic, Faculty of Mechanical Engineering, University of Kashan, Kashan, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mohammad-Rezaei Bidgoli", 
        "givenName": "E.", 
        "id": "sg:person.014563056621.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014563056621.68"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Solid Mechanic, Faculty of Mechanical Engineering, University of Kashan, Kashan, Iran", 
          "id": "http://www.grid.ac/institutes/grid.412057.5", 
          "name": [
            "Department of Solid Mechanic, Faculty of Mechanical Engineering, University of Kashan, Kashan, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Arefi", 
        "givenName": "Mohammad", 
        "id": "sg:person.012150764031.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012150764031.80"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00707-013-0888-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021700320", 
          "https://doi.org/10.1007/s00707-013-0888-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10483-016-2098-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031288372", 
          "https://doi.org/10.1007/s10483-016-2098-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00366-020-01183-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1132131240", 
          "https://doi.org/10.1007/s00366-020-01183-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00466-013-0948-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019157344", 
          "https://doi.org/10.1007/s00466-013-0948-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00366-020-01004-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1125834399", 
          "https://doi.org/10.1007/s00366-020-01004-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00366-020-01110-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1129683249", 
          "https://doi.org/10.1007/s00366-020-01110-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00366-020-01068-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1128101547", 
          "https://doi.org/10.1007/s00366-020-01068-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00707-012-0629-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040236102", 
          "https://doi.org/10.1007/s00707-012-0629-9"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2021-11-29", 
    "datePublishedReg": "2021-11-29", 
    "description": "In this work, nonlocal dynamic formulation of a graphene nanoplatelets reinforced composite doubly curved micro/nano shell is presented based on Hamilton\u2019s principle using a shear deformable model. The structure is composed of a honeycomb core integrated with graphene nanoplatelets reinforced face-sheets. The material properties of honeycomb core are computed using available formula in literature. Furthermore, material properties of composite reinforced face-sheets are assumed to vary along the thickness direction based on Halpin\u2013Tsai micromechanical models and rule of mixture. The size-dependent governing equations of motion are derived through employing nonlocal equations. After verification of the formulation and solution procedure using a comparative study, the large parametric results are presented to discuss impact of main geometric, material and small scale parameters on the free vibration characteristics. As a main result of the present paper is this fact that the lowest frequencies are obtained for \u03d50=h0/l0=0.6\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\phi_{0} = {{h_{0} } \\mathord{\\left/ {\\vphantom {{h_{0} } {l_{0} }}} \\right. \\kern-\\nulldelimiterspace} {l_{0} }} = 0.6$$\\end{document}. It is concluded that with increase of \u03d50\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\phi_{0}$$\\end{document} from small values, the mass is increased more than increase of stiffness that leads to a decrease in frequencies unlike higher values of \u03d50\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\phi_{0}$$\\end{document}, in which an increase in structural stiffness is reached respect to a small increase in mass that leads to a main increase in frequencies.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00366-021-01529-x", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1041785", 
        "issn": [
          "0177-0667", 
          "1435-5663"
        ], 
        "name": "Engineering with Computers", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }
    ], 
    "keywords": [
      "honeycomb core", 
      "graphene nanoplatelets", 
      "material properties", 
      "Halpin-Tsai micromechanical model", 
      "shear deformable model", 
      "rule of mixtures", 
      "size-dependent governing equations", 
      "free vibration characteristics", 
      "increase of stiffness", 
      "small-scale parameter", 
      "thickness direction", 
      "micromechanical model", 
      "vibration characteristics", 
      "structural stiffness", 
      "Hamilton\u2019s principle", 
      "governing equations", 
      "nano-shell", 
      "wave propagation", 
      "dynamic formulation", 
      "parametric results", 
      "h0/", 
      "nanoplatelets", 
      "solution procedure", 
      "composite nanosystem", 
      "stiffness", 
      "scale parameter", 
      "available formulas", 
      "present paper", 
      "low frequency", 
      "small values", 
      "deformable model", 
      "properties", 
      "higher values", 
      "equations", 
      "formulation", 
      "frequency", 
      "materials", 
      "propagation", 
      "motion", 
      "shell", 
      "core", 
      "model", 
      "verification", 
      "increase", 
      "parameters", 
      "mixture", 
      "comparative study", 
      "results", 
      "principles", 
      "structure", 
      "values", 
      "characteristics", 
      "direction", 
      "work", 
      "main increase", 
      "nanosystems", 
      "dynamics", 
      "\u03d50", 
      "mass", 
      "formula", 
      "respect", 
      "small increase", 
      "nonlocal equations", 
      "procedure", 
      "decrease", 
      "impact", 
      "main results", 
      "rules", 
      "study", 
      "fact", 
      "literature", 
      "paper"
    ], 
    "name": "On the dynamics and wave propagation of reinforced composite nanosystem", 
    "pagination": "1-21", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1143437318"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00366-021-01529-x"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00366-021-01529-x", 
      "https://app.dimensions.ai/details/publication/pub.1143437318"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-10T10:29", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_883.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00366-021-01529-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00366-021-01529-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00366-021-01529-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00366-021-01529-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00366-021-01529-x'


 

This table displays all metadata directly associated to this object as RDF triples.

203 TRIPLES      22 PREDICATES      106 URIs      87 LITERALS      4 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00366-021-01529-x schema:about anzsrc-for:01
2 anzsrc-for:0102
3 anzsrc-for:08
4 anzsrc-for:0801
5 anzsrc-for:0802
6 schema:author N6c840bec17004cc19a0348526ede7294
7 schema:citation sg:pub.10.1007/s00366-020-01004-z
8 sg:pub.10.1007/s00366-020-01068-x
9 sg:pub.10.1007/s00366-020-01110-y
10 sg:pub.10.1007/s00366-020-01183-9
11 sg:pub.10.1007/s00466-013-0948-2
12 sg:pub.10.1007/s00707-012-0629-9
13 sg:pub.10.1007/s00707-013-0888-0
14 sg:pub.10.1007/s10483-016-2098-9
15 schema:datePublished 2021-11-29
16 schema:datePublishedReg 2021-11-29
17 schema:description In this work, nonlocal dynamic formulation of a graphene nanoplatelets reinforced composite doubly curved micro/nano shell is presented based on Hamilton’s principle using a shear deformable model. The structure is composed of a honeycomb core integrated with graphene nanoplatelets reinforced face-sheets. The material properties of honeycomb core are computed using available formula in literature. Furthermore, material properties of composite reinforced face-sheets are assumed to vary along the thickness direction based on Halpin–Tsai micromechanical models and rule of mixture. The size-dependent governing equations of motion are derived through employing nonlocal equations. After verification of the formulation and solution procedure using a comparative study, the large parametric results are presented to discuss impact of main geometric, material and small scale parameters on the free vibration characteristics. As a main result of the present paper is this fact that the lowest frequencies are obtained for ϕ0=h0/l0=0.6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi_{0} = {{h_{0} } \mathord{\left/ {\vphantom {{h_{0} } {l_{0} }}} \right. \kern-\nulldelimiterspace} {l_{0} }} = 0.6$$\end{document}. It is concluded that with increase of ϕ0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi_{0}$$\end{document} from small values, the mass is increased more than increase of stiffness that leads to a decrease in frequencies unlike higher values of ϕ0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi_{0}$$\end{document}, in which an increase in structural stiffness is reached respect to a small increase in mass that leads to a main increase in frequencies.
18 schema:genre article
19 schema:inLanguage en
20 schema:isAccessibleForFree false
21 schema:isPartOf sg:journal.1041785
22 schema:keywords Halpin-Tsai micromechanical model
23 Hamilton’s principle
24 available formulas
25 characteristics
26 comparative study
27 composite nanosystem
28 core
29 decrease
30 deformable model
31 direction
32 dynamic formulation
33 dynamics
34 equations
35 fact
36 formula
37 formulation
38 free vibration characteristics
39 frequency
40 governing equations
41 graphene nanoplatelets
42 h0/
43 higher values
44 honeycomb core
45 impact
46 increase
47 increase of stiffness
48 literature
49 low frequency
50 main increase
51 main results
52 mass
53 material properties
54 materials
55 micromechanical model
56 mixture
57 model
58 motion
59 nano-shell
60 nanoplatelets
61 nanosystems
62 nonlocal equations
63 paper
64 parameters
65 parametric results
66 present paper
67 principles
68 procedure
69 propagation
70 properties
71 respect
72 results
73 rule of mixtures
74 rules
75 scale parameter
76 shear deformable model
77 shell
78 size-dependent governing equations
79 small increase
80 small values
81 small-scale parameter
82 solution procedure
83 stiffness
84 structural stiffness
85 structure
86 study
87 thickness direction
88 values
89 verification
90 vibration characteristics
91 wave propagation
92 work
93 ϕ0
94 schema:name On the dynamics and wave propagation of reinforced composite nanosystem
95 schema:pagination 1-21
96 schema:productId N3d1fd9f708c84cd6a0a1ba0c43531c2e
97 N3edbbc18235c4dc28647f7ca12fcf819
98 schema:sameAs https://app.dimensions.ai/details/publication/pub.1143437318
99 https://doi.org/10.1007/s00366-021-01529-x
100 schema:sdDatePublished 2022-05-10T10:29
101 schema:sdLicense https://scigraph.springernature.com/explorer/license/
102 schema:sdPublisher N38352332fb32488a94b55168f0d1aad5
103 schema:url https://doi.org/10.1007/s00366-021-01529-x
104 sgo:license sg:explorer/license/
105 sgo:sdDataset articles
106 rdf:type schema:ScholarlyArticle
107 N38352332fb32488a94b55168f0d1aad5 schema:name Springer Nature - SN SciGraph project
108 rdf:type schema:Organization
109 N3d1fd9f708c84cd6a0a1ba0c43531c2e schema:name doi
110 schema:value 10.1007/s00366-021-01529-x
111 rdf:type schema:PropertyValue
112 N3edbbc18235c4dc28647f7ca12fcf819 schema:name dimensions_id
113 schema:value pub.1143437318
114 rdf:type schema:PropertyValue
115 N45a82fa7c11f4481b71a0e6dfaa95fa3 schema:affiliation grid-institutes:None
116 schema:familyName Liu
117 schema:givenName Shaochang
118 rdf:type schema:Person
119 N6c840bec17004cc19a0348526ede7294 rdf:first sg:person.010152570157.99
120 rdf:rest N9420c106afff4e0aaad0bdc131d14f3e
121 N6e7a2987972a4788834d78b4387d4247 schema:affiliation grid-institutes:grid.34477.33
122 schema:familyName Wang
123 schema:givenName Pinyi
124 rdf:type schema:Person
125 N865c23d91b0147ebaf77f047a8b65045 rdf:first N6e7a2987972a4788834d78b4387d4247
126 rdf:rest Nf9a8cd690d12496d908a4f27f8245017
127 N9420c106afff4e0aaad0bdc131d14f3e rdf:first N45a82fa7c11f4481b71a0e6dfaa95fa3
128 rdf:rest N865c23d91b0147ebaf77f047a8b65045
129 N9d7d05e82b444d1486de461425c43d8c rdf:first sg:person.012150764031.80
130 rdf:rest rdf:nil
131 Nf9a8cd690d12496d908a4f27f8245017 rdf:first sg:person.014563056621.68
132 rdf:rest N9d7d05e82b444d1486de461425c43d8c
133 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
134 schema:name Mathematical Sciences
135 rdf:type schema:DefinedTerm
136 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
137 schema:name Applied Mathematics
138 rdf:type schema:DefinedTerm
139 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
140 schema:name Information and Computing Sciences
141 rdf:type schema:DefinedTerm
142 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
143 schema:name Artificial Intelligence and Image Processing
144 rdf:type schema:DefinedTerm
145 anzsrc-for:0802 schema:inDefinedTermSet anzsrc-for:
146 schema:name Computation Theory and Mathematics
147 rdf:type schema:DefinedTerm
148 sg:journal.1041785 schema:issn 0177-0667
149 1435-5663
150 schema:name Engineering with Computers
151 schema:publisher Springer Nature
152 rdf:type schema:Periodical
153 sg:person.010152570157.99 schema:affiliation grid-institutes:grid.459324.d
154 schema:familyName Lv
155 schema:givenName Xiaolan
156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010152570157.99
157 rdf:type schema:Person
158 sg:person.012150764031.80 schema:affiliation grid-institutes:grid.412057.5
159 schema:familyName Arefi
160 schema:givenName Mohammad
161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012150764031.80
162 rdf:type schema:Person
163 sg:person.014563056621.68 schema:affiliation grid-institutes:grid.412057.5
164 schema:familyName Mohammad-Rezaei Bidgoli
165 schema:givenName E.
166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014563056621.68
167 rdf:type schema:Person
168 sg:pub.10.1007/s00366-020-01004-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1125834399
169 https://doi.org/10.1007/s00366-020-01004-z
170 rdf:type schema:CreativeWork
171 sg:pub.10.1007/s00366-020-01068-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1128101547
172 https://doi.org/10.1007/s00366-020-01068-x
173 rdf:type schema:CreativeWork
174 sg:pub.10.1007/s00366-020-01110-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1129683249
175 https://doi.org/10.1007/s00366-020-01110-y
176 rdf:type schema:CreativeWork
177 sg:pub.10.1007/s00366-020-01183-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1132131240
178 https://doi.org/10.1007/s00366-020-01183-9
179 rdf:type schema:CreativeWork
180 sg:pub.10.1007/s00466-013-0948-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019157344
181 https://doi.org/10.1007/s00466-013-0948-2
182 rdf:type schema:CreativeWork
183 sg:pub.10.1007/s00707-012-0629-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040236102
184 https://doi.org/10.1007/s00707-012-0629-9
185 rdf:type schema:CreativeWork
186 sg:pub.10.1007/s00707-013-0888-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021700320
187 https://doi.org/10.1007/s00707-013-0888-0
188 rdf:type schema:CreativeWork
189 sg:pub.10.1007/s10483-016-2098-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031288372
190 https://doi.org/10.1007/s10483-016-2098-9
191 rdf:type schema:CreativeWork
192 grid-institutes:None schema:alternateName Wuhu Electrical Machinery Co. Ltd, 241000, Wuhu, Anhui, China
193 schema:name Wuhu Electrical Machinery Co. Ltd, 241000, Wuhu, Anhui, China
194 rdf:type schema:Organization
195 grid-institutes:grid.34477.33 schema:alternateName Department of Electrical and Computer Engineering, University of Washington, 98195, Seattle, WA, USA
196 schema:name Department of Electrical and Computer Engineering, University of Washington, 98195, Seattle, WA, USA
197 rdf:type schema:Organization
198 grid-institutes:grid.412057.5 schema:alternateName Department of Solid Mechanic, Faculty of Mechanical Engineering, University of Kashan, Kashan, Iran
199 schema:name Department of Solid Mechanic, Faculty of Mechanical Engineering, University of Kashan, Kashan, Iran
200 rdf:type schema:Organization
201 grid-institutes:grid.459324.d schema:alternateName Functional Supersonic Room, Affiliated Hospital of Hebei University, 071000, Baoding, Hebei, China
202 schema:name Functional Supersonic Room, Affiliated Hospital of Hebei University, 071000, Baoding, Hebei, China
203 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...