Ontology type: schema:ScholarlyArticle
2021-11-03
AUTHORSPham Toan Thang, Dieu T. T. Do, Jaehong Lee, T. Nguyen-Thoi
ABSTRACTAs initial endeavors, this paper presents an in-depth study to investigate the influence of nanoscale parameters on bending and free vibration responses of functionally graded carbon nanotube-reinforced composite (FG-CNTRC) nanoshells with double curvature. Carbon nanotubes (CNTs) are considered as reinforcements that are distributed across the shell thickness with two different distributions, namely the UD and FG-X. First of all, the mathematical formulas are built on the nonlocal strain gradient theory which, as a critical point of this study, considers both nonlocal and strain gradient parameters simultaneously. Additionally, toward using the Navier solution, the simply supported boundary condition is established to obtain the deflection and natural frequency of FG-CNTRC nanoshells. Furthermore, some specific numerical results are shown and compared with the results reported in the literature. Most importantly, the new findings are given and discussed deeply to show the effect of nanoscale parameters and material property and shape of shells on the deflection and fundamental frequency parameters of the FG-CNTRC nanoshells. From the obtained results, it is shown that the small length-scale has a significant effect on frequencies and deflection of FG-CNTRC nanoshells. More... »
PAGES1-20
http://scigraph.springernature.com/pub.10.1007/s00366-021-01517-1
DOIhttp://dx.doi.org/10.1007/s00366-021-01517-1
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1142390968
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Information and Computing Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Applied Mathematics",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Artificial Intelligence and Image Processing",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0802",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Computation Theory and Mathematics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Faculty of Civil Engineering, Ton Duc Thang University, Ho Chi Minh City, Vietnam",
"id": "http://www.grid.ac/institutes/grid.444812.f",
"name": [
"Division of Computational Mathematics and Engineering, Institute for Computational Science, Ton Duc Thang University, Ho Chi Minh City, Vietnam",
"Faculty of Civil Engineering, Ton Duc Thang University, Ho Chi Minh City, Vietnam"
],
"type": "Organization"
},
"familyName": "Thang",
"givenName": "Pham Toan",
"id": "sg:person.012700323451.29",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012700323451.29"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Duy Tan Research Institute for Computational Engineering (DTRice), Duy Tan University, 550000, Da Nang, Vietnam",
"id": "http://www.grid.ac/institutes/grid.444918.4",
"name": [
"Duy Tan Research Institute for Computational Engineering (DTRice), Duy Tan University, 550000, Da Nang, Vietnam"
],
"type": "Organization"
},
"familyName": "Do",
"givenName": "Dieu T. T.",
"id": "sg:person.010016625754.56",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010016625754.56"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Deep Learning Architecture Research Center, Sejong University, 209 Neungdong-ro, Gwangjin-gu, 143-747, Seoul, Republic of Korea",
"id": "http://www.grid.ac/institutes/grid.263333.4",
"name": [
"Deep Learning Architecture Research Center, Sejong University, 209 Neungdong-ro, Gwangjin-gu, 143-747, Seoul, Republic of Korea"
],
"type": "Organization"
},
"familyName": "Lee",
"givenName": "Jaehong",
"id": "sg:person.013544506437.00",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013544506437.00"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Faculty of Civil Engineering, Ton Duc Thang University, Ho Chi Minh City, Vietnam",
"id": "http://www.grid.ac/institutes/grid.444812.f",
"name": [
"Division of Computational Mathematics and Engineering, Institute for Computational Science, Ton Duc Thang University, Ho Chi Minh City, Vietnam",
"Faculty of Civil Engineering, Ton Duc Thang University, Ho Chi Minh City, Vietnam"
],
"type": "Organization"
},
"familyName": "Nguyen-Thoi",
"givenName": "T.",
"id": "sg:person.07354764215.20",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07354764215.20"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/s00366-021-01353-3",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1136366091",
"https://doi.org/10.1007/s00366-021-01353-3"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00366-021-01413-8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1138068493",
"https://doi.org/10.1007/s00366-021-01413-8"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/srep06479",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1017443789",
"https://doi.org/10.1038/srep06479"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00366-020-01098-5",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1128973275",
"https://doi.org/10.1007/s00366-020-01098-5"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00707-016-1647-9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1039427543",
"https://doi.org/10.1007/s00707-016-1647-9"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf00253945",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1031046763",
"https://doi.org/10.1007/bf00253945"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s40430-016-0551-5",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1013794937",
"https://doi.org/10.1007/s40430-016-0551-5"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/381678a0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1036830729",
"https://doi.org/10.1038/381678a0"
],
"type": "CreativeWork"
}
],
"datePublished": "2021-11-03",
"datePublishedReg": "2021-11-03",
"description": "As initial endeavors, this paper presents an in-depth study to investigate the influence of nanoscale parameters on bending and free vibration responses of functionally graded carbon nanotube-reinforced composite (FG-CNTRC) nanoshells with double curvature. Carbon nanotubes (CNTs) are considered as reinforcements that are distributed across the shell thickness with two different distributions, namely the UD and FG-X. First of all, the mathematical formulas are built on the nonlocal strain gradient theory which, as a critical point of this study, considers both nonlocal and strain gradient parameters simultaneously. Additionally, toward using the Navier solution, the simply supported boundary condition is established to obtain the deflection and natural frequency of FG-CNTRC nanoshells. Furthermore, some specific numerical results are shown and compared with the results reported in the literature. Most importantly, the new findings are given and discussed deeply to show the effect of nanoscale parameters and material property and shape of shells on the deflection and fundamental frequency parameters of the FG-CNTRC nanoshells. From the obtained results, it is shown that the small length-scale has a significant effect on frequencies and deflection of FG-CNTRC nanoshells.",
"genre": "article",
"id": "sg:pub.10.1007/s00366-021-01517-1",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1041785",
"issn": [
"0177-0667",
"1435-5663"
],
"name": "Engineering with Computers",
"publisher": "Springer Nature",
"type": "Periodical"
}
],
"keywords": [
"nonlocal strain gradient theory",
"strain gradient theory",
"gradient theory",
"nanoscale parameters",
"carbon nanotube-reinforced composites",
"double curvature",
"nanotube-reinforced composites",
"free vibration response",
"carbon nanotubes",
"size-dependent analysis",
"composite nanoshells",
"fundamental frequency parameters",
"vibration response",
"Navier solution",
"natural frequencies",
"material properties",
"gradient parameter",
"specific numerical results",
"boundary conditions",
"deflection",
"frequency parameters",
"numerical results",
"shell thickness",
"shape of shells",
"nanoshells",
"composites",
"parameters",
"nanotubes",
"reinforcement",
"thickness",
"curvature",
"mathematical formula",
"critical point",
"frequency",
"shell",
"properties",
"results",
"shape",
"solution",
"significant effect",
"depth study",
"influence",
"UD",
"conditions",
"effect",
"different distributions",
"distribution",
"theory",
"FG",
"point",
"formula",
"analysis",
"study",
"new findings",
"response",
"literature",
"initial endeavors",
"endeavor",
"findings",
"paper"
],
"name": "Size-dependent analysis of functionally graded carbon nanotube-reinforced composite nanoshells with double curvature based on nonlocal strain gradient theory",
"pagination": "1-20",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1142390968"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s00366-021-01517-1"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s00366-021-01517-1",
"https://app.dimensions.ai/details/publication/pub.1142390968"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-10T10:33",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_910.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s00366-021-01517-1"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00366-021-01517-1'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00366-021-01517-1'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00366-021-01517-1'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00366-021-01517-1'
This table displays all metadata directly associated to this object as RDF triples.
184 TRIPLES
22 PREDICATES
94 URIs
75 LITERALS
4 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/s00366-021-01517-1 | schema:about | anzsrc-for:01 |
2 | ″ | ″ | anzsrc-for:0102 |
3 | ″ | ″ | anzsrc-for:08 |
4 | ″ | ″ | anzsrc-for:0801 |
5 | ″ | ″ | anzsrc-for:0802 |
6 | ″ | schema:author | N4cf2dfadc0b742cb891e9db15bc95f54 |
7 | ″ | schema:citation | sg:pub.10.1007/bf00253945 |
8 | ″ | ″ | sg:pub.10.1007/s00366-020-01098-5 |
9 | ″ | ″ | sg:pub.10.1007/s00366-021-01353-3 |
10 | ″ | ″ | sg:pub.10.1007/s00366-021-01413-8 |
11 | ″ | ″ | sg:pub.10.1007/s00707-016-1647-9 |
12 | ″ | ″ | sg:pub.10.1007/s40430-016-0551-5 |
13 | ″ | ″ | sg:pub.10.1038/381678a0 |
14 | ″ | ″ | sg:pub.10.1038/srep06479 |
15 | ″ | schema:datePublished | 2021-11-03 |
16 | ″ | schema:datePublishedReg | 2021-11-03 |
17 | ″ | schema:description | As initial endeavors, this paper presents an in-depth study to investigate the influence of nanoscale parameters on bending and free vibration responses of functionally graded carbon nanotube-reinforced composite (FG-CNTRC) nanoshells with double curvature. Carbon nanotubes (CNTs) are considered as reinforcements that are distributed across the shell thickness with two different distributions, namely the UD and FG-X. First of all, the mathematical formulas are built on the nonlocal strain gradient theory which, as a critical point of this study, considers both nonlocal and strain gradient parameters simultaneously. Additionally, toward using the Navier solution, the simply supported boundary condition is established to obtain the deflection and natural frequency of FG-CNTRC nanoshells. Furthermore, some specific numerical results are shown and compared with the results reported in the literature. Most importantly, the new findings are given and discussed deeply to show the effect of nanoscale parameters and material property and shape of shells on the deflection and fundamental frequency parameters of the FG-CNTRC nanoshells. From the obtained results, it is shown that the small length-scale has a significant effect on frequencies and deflection of FG-CNTRC nanoshells. |
18 | ″ | schema:genre | article |
19 | ″ | schema:inLanguage | en |
20 | ″ | schema:isAccessibleForFree | false |
21 | ″ | schema:isPartOf | sg:journal.1041785 |
22 | ″ | schema:keywords | FG |
23 | ″ | ″ | Navier solution |
24 | ″ | ″ | UD |
25 | ″ | ″ | analysis |
26 | ″ | ″ | boundary conditions |
27 | ″ | ″ | carbon nanotube-reinforced composites |
28 | ″ | ″ | carbon nanotubes |
29 | ″ | ″ | composite nanoshells |
30 | ″ | ″ | composites |
31 | ″ | ″ | conditions |
32 | ″ | ″ | critical point |
33 | ″ | ″ | curvature |
34 | ″ | ″ | deflection |
35 | ″ | ″ | depth study |
36 | ″ | ″ | different distributions |
37 | ″ | ″ | distribution |
38 | ″ | ″ | double curvature |
39 | ″ | ″ | effect |
40 | ″ | ″ | endeavor |
41 | ″ | ″ | findings |
42 | ″ | ″ | formula |
43 | ″ | ″ | free vibration response |
44 | ″ | ″ | frequency |
45 | ″ | ″ | frequency parameters |
46 | ″ | ″ | fundamental frequency parameters |
47 | ″ | ″ | gradient parameter |
48 | ″ | ″ | gradient theory |
49 | ″ | ″ | influence |
50 | ″ | ″ | initial endeavors |
51 | ″ | ″ | literature |
52 | ″ | ″ | material properties |
53 | ″ | ″ | mathematical formula |
54 | ″ | ″ | nanoscale parameters |
55 | ″ | ″ | nanoshells |
56 | ″ | ″ | nanotube-reinforced composites |
57 | ″ | ″ | nanotubes |
58 | ″ | ″ | natural frequencies |
59 | ″ | ″ | new findings |
60 | ″ | ″ | nonlocal strain gradient theory |
61 | ″ | ″ | numerical results |
62 | ″ | ″ | paper |
63 | ″ | ″ | parameters |
64 | ″ | ″ | point |
65 | ″ | ″ | properties |
66 | ″ | ″ | reinforcement |
67 | ″ | ″ | response |
68 | ″ | ″ | results |
69 | ″ | ″ | shape |
70 | ″ | ″ | shape of shells |
71 | ″ | ″ | shell |
72 | ″ | ″ | shell thickness |
73 | ″ | ″ | significant effect |
74 | ″ | ″ | size-dependent analysis |
75 | ″ | ″ | solution |
76 | ″ | ″ | specific numerical results |
77 | ″ | ″ | strain gradient theory |
78 | ″ | ″ | study |
79 | ″ | ″ | theory |
80 | ″ | ″ | thickness |
81 | ″ | ″ | vibration response |
82 | ″ | schema:name | Size-dependent analysis of functionally graded carbon nanotube-reinforced composite nanoshells with double curvature based on nonlocal strain gradient theory |
83 | ″ | schema:pagination | 1-20 |
84 | ″ | schema:productId | Nc52f9857a8c04a078414908c150cf88e |
85 | ″ | ″ | Ndca31568408540518a86f4eef1ff9436 |
86 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1142390968 |
87 | ″ | ″ | https://doi.org/10.1007/s00366-021-01517-1 |
88 | ″ | schema:sdDatePublished | 2022-05-10T10:33 |
89 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
90 | ″ | schema:sdPublisher | N37def4743cc84a538847615f893b392e |
91 | ″ | schema:url | https://doi.org/10.1007/s00366-021-01517-1 |
92 | ″ | sgo:license | sg:explorer/license/ |
93 | ″ | sgo:sdDataset | articles |
94 | ″ | rdf:type | schema:ScholarlyArticle |
95 | N076694447ff3468ab688231da326ab8d | rdf:first | sg:person.013544506437.00 |
96 | ″ | rdf:rest | N463a78e58aae4d0888702fd43279abd7 |
97 | N37def4743cc84a538847615f893b392e | schema:name | Springer Nature - SN SciGraph project |
98 | ″ | rdf:type | schema:Organization |
99 | N463a78e58aae4d0888702fd43279abd7 | rdf:first | sg:person.07354764215.20 |
100 | ″ | rdf:rest | rdf:nil |
101 | N4cf2dfadc0b742cb891e9db15bc95f54 | rdf:first | sg:person.012700323451.29 |
102 | ″ | rdf:rest | N857efff2394a4cc9b02a6420fe93e208 |
103 | N857efff2394a4cc9b02a6420fe93e208 | rdf:first | sg:person.010016625754.56 |
104 | ″ | rdf:rest | N076694447ff3468ab688231da326ab8d |
105 | Nc52f9857a8c04a078414908c150cf88e | schema:name | dimensions_id |
106 | ″ | schema:value | pub.1142390968 |
107 | ″ | rdf:type | schema:PropertyValue |
108 | Ndca31568408540518a86f4eef1ff9436 | schema:name | doi |
109 | ″ | schema:value | 10.1007/s00366-021-01517-1 |
110 | ″ | rdf:type | schema:PropertyValue |
111 | anzsrc-for:01 | schema:inDefinedTermSet | anzsrc-for: |
112 | ″ | schema:name | Mathematical Sciences |
113 | ″ | rdf:type | schema:DefinedTerm |
114 | anzsrc-for:0102 | schema:inDefinedTermSet | anzsrc-for: |
115 | ″ | schema:name | Applied Mathematics |
116 | ″ | rdf:type | schema:DefinedTerm |
117 | anzsrc-for:08 | schema:inDefinedTermSet | anzsrc-for: |
118 | ″ | schema:name | Information and Computing Sciences |
119 | ″ | rdf:type | schema:DefinedTerm |
120 | anzsrc-for:0801 | schema:inDefinedTermSet | anzsrc-for: |
121 | ″ | schema:name | Artificial Intelligence and Image Processing |
122 | ″ | rdf:type | schema:DefinedTerm |
123 | anzsrc-for:0802 | schema:inDefinedTermSet | anzsrc-for: |
124 | ″ | schema:name | Computation Theory and Mathematics |
125 | ″ | rdf:type | schema:DefinedTerm |
126 | sg:journal.1041785 | schema:issn | 0177-0667 |
127 | ″ | ″ | 1435-5663 |
128 | ″ | schema:name | Engineering with Computers |
129 | ″ | schema:publisher | Springer Nature |
130 | ″ | rdf:type | schema:Periodical |
131 | sg:person.010016625754.56 | schema:affiliation | grid-institutes:grid.444918.4 |
132 | ″ | schema:familyName | Do |
133 | ″ | schema:givenName | Dieu T. T. |
134 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010016625754.56 |
135 | ″ | rdf:type | schema:Person |
136 | sg:person.012700323451.29 | schema:affiliation | grid-institutes:grid.444812.f |
137 | ″ | schema:familyName | Thang |
138 | ″ | schema:givenName | Pham Toan |
139 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012700323451.29 |
140 | ″ | rdf:type | schema:Person |
141 | sg:person.013544506437.00 | schema:affiliation | grid-institutes:grid.263333.4 |
142 | ″ | schema:familyName | Lee |
143 | ″ | schema:givenName | Jaehong |
144 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013544506437.00 |
145 | ″ | rdf:type | schema:Person |
146 | sg:person.07354764215.20 | schema:affiliation | grid-institutes:grid.444812.f |
147 | ″ | schema:familyName | Nguyen-Thoi |
148 | ″ | schema:givenName | T. |
149 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07354764215.20 |
150 | ″ | rdf:type | schema:Person |
151 | sg:pub.10.1007/bf00253945 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1031046763 |
152 | ″ | ″ | https://doi.org/10.1007/bf00253945 |
153 | ″ | rdf:type | schema:CreativeWork |
154 | sg:pub.10.1007/s00366-020-01098-5 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1128973275 |
155 | ″ | ″ | https://doi.org/10.1007/s00366-020-01098-5 |
156 | ″ | rdf:type | schema:CreativeWork |
157 | sg:pub.10.1007/s00366-021-01353-3 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1136366091 |
158 | ″ | ″ | https://doi.org/10.1007/s00366-021-01353-3 |
159 | ″ | rdf:type | schema:CreativeWork |
160 | sg:pub.10.1007/s00366-021-01413-8 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1138068493 |
161 | ″ | ″ | https://doi.org/10.1007/s00366-021-01413-8 |
162 | ″ | rdf:type | schema:CreativeWork |
163 | sg:pub.10.1007/s00707-016-1647-9 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1039427543 |
164 | ″ | ″ | https://doi.org/10.1007/s00707-016-1647-9 |
165 | ″ | rdf:type | schema:CreativeWork |
166 | sg:pub.10.1007/s40430-016-0551-5 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1013794937 |
167 | ″ | ″ | https://doi.org/10.1007/s40430-016-0551-5 |
168 | ″ | rdf:type | schema:CreativeWork |
169 | sg:pub.10.1038/381678a0 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1036830729 |
170 | ″ | ″ | https://doi.org/10.1038/381678a0 |
171 | ″ | rdf:type | schema:CreativeWork |
172 | sg:pub.10.1038/srep06479 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1017443789 |
173 | ″ | ″ | https://doi.org/10.1038/srep06479 |
174 | ″ | rdf:type | schema:CreativeWork |
175 | grid-institutes:grid.263333.4 | schema:alternateName | Deep Learning Architecture Research Center, Sejong University, 209 Neungdong-ro, Gwangjin-gu, 143-747, Seoul, Republic of Korea |
176 | ″ | schema:name | Deep Learning Architecture Research Center, Sejong University, 209 Neungdong-ro, Gwangjin-gu, 143-747, Seoul, Republic of Korea |
177 | ″ | rdf:type | schema:Organization |
178 | grid-institutes:grid.444812.f | schema:alternateName | Faculty of Civil Engineering, Ton Duc Thang University, Ho Chi Minh City, Vietnam |
179 | ″ | schema:name | Division of Computational Mathematics and Engineering, Institute for Computational Science, Ton Duc Thang University, Ho Chi Minh City, Vietnam |
180 | ″ | ″ | Faculty of Civil Engineering, Ton Duc Thang University, Ho Chi Minh City, Vietnam |
181 | ″ | rdf:type | schema:Organization |
182 | grid-institutes:grid.444918.4 | schema:alternateName | Duy Tan Research Institute for Computational Engineering (DTRice), Duy Tan University, 550000, Da Nang, Vietnam |
183 | ″ | schema:name | Duy Tan Research Institute for Computational Engineering (DTRice), Duy Tan University, 550000, Da Nang, Vietnam |
184 | ″ | rdf:type | schema:Organization |