Prediction of rock interlocking by developing two hybrid models based on GA and fuzzy system View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-12-14

AUTHORS

Bhatawdekar Ramesh Murlidhar, Munir Ahmed, Dinesh Mavaluru, Ahmed Faisal Siddiqi, Edy Tonnizam Mohamad

ABSTRACT

Rock shear strength parameters (interlocking and internal friction angel) are considered as significant factors in the designing stage of various geotechnical structures such as tunnels and foundations. Direct determination of these parameters in laboratory is time-consuming and expensive. Additionally, preparation of good quality of core samples is sometimes difficult. The objective of this paper is introducing and evaluating two hybrid artificial neural network (ANN)-based models by considering genetic algorithm (GA) and fuzzy inference system for prediction of interlocking of shale rock samples. Therefore, hybrid GA-ANN and adoptive neuro-fuzzy inference system (ANFIS) were developed and to show the capability of the hybrid models, the predicted results were compared to those of a pre-developed ANN model. In development of these models, the results of rock index tests, i.e., point load index, dry density, p-wave velocity, Brazilian tensile strength and Schmidt hammer were taken into account as the input parameters, whereas the interlocking of the shale samples was set as the output. The results obtained in this study confirmed the high reliability of the developed hybrid models, however, ANFIS predictive model receives slightly higher performance prediction compared to GA-ANN technique. The obtained results of the developed models were (0.865, 0.852), (0.933, 0.929) and (0.957, 0.965) for ANN, GA-ANN and ANFIS models, respectively, based on coefficient of determination (R2). ANFIS can be introduced as an innovative model to the field of rock mechanics. More... »

PAGES

1419-1430

References to SciGraph publications

  • 2016-06-17. Application of PSO to develop a powerful equation for prediction of flyrock due to blasting in NEURAL COMPUTING AND APPLICATIONS
  • 2013-10-08. Numerical and intelligent modeling of triaxial strength of anisotropic jointed rock specimens in EARTH SCIENCE INFORMATICS
  • 2018-06-22. A combination of artificial bee colony and neural network for approximating the safety factor of retaining walls in ENGINEERING WITH COMPUTERS
  • 2015-10-31. Several non-linear models in estimating air-overpressure resulting from mine blasting in ENGINEERING WITH COMPUTERS
  • 2015-06-10. Neuro-fuzzy technique to predict air-overpressure induced by blasting in ARABIAN JOURNAL OF GEOSCIENCES
  • 2015-12-18. Prediction of Drillability of Rocks with Strength Properties Using a Hybrid GA-ANN Technique in GEOTECHNICAL AND GEOLOGICAL ENGINEERING
  • 2017-07-01. A neuro-genetic predictive model to approximate overbreak induced by drilling and blasting operation in tunnels in BULLETIN OF ENGINEERING GEOLOGY AND THE ENVIRONMENT
  • 2017-11-22. Developing a least squares support vector machine for estimating the blast-induced flyrock in ENGINEERING WITH COMPUTERS
  • 2016-04-25. A new model based on gene expression programming to estimate air flow in a single rock joint in ENVIRONMENTAL EARTH SCIENCES
  • 2017-03-06. RETRACTED ARTICLE: Analysis of influential factors for predicting the shear strength of a V-shaped angle shear connector in composite beams using an adaptive neuro-fuzzy technique in JOURNAL OF INTELLIGENT MANUFACTURING
  • 2005-06. An intelligent approach to prediction and control ground vibration in mines in GEOTECHNICAL AND GEOLOGICAL ENGINEERING
  • 2013-03-12. An Experimental Investigation of Shale Mechanical Properties Through Drained and Undrained Test Mechanisms in ROCK MECHANICS AND ROCK ENGINEERING
  • 2016-07-11. Prediction of the durability of limestone aggregates using computational techniques in NEURAL COMPUTING AND APPLICATIONS
  • 2016-04-09. RETRACTED ARTICLE: Potential of soft computing approach for evaluating the factors affecting the capacity of steel–concrete composite beam in JOURNAL OF INTELLIGENT MANUFACTURING
  • 2016-09-14. Airblast prediction through a hybrid genetic algorithm-ANN model in NEURAL COMPUTING AND APPLICATIONS
  • 2016-08-30. Feasibility of ICA in approximating ground vibration resulting from mine blasting in NEURAL COMPUTING AND APPLICATIONS
  • 2018-05-21. Development of GP and GEP models to estimate an environmental issue induced by blasting operation in ENVIRONMENTAL MONITORING AND ASSESSMENT
  • 2015-04-25. Application of two intelligent systems in predicting environmental impacts of quarry blasting in ARABIAN JOURNAL OF GEOSCIENCES
  • 2015-09-12. Combination of neural network and ant colony optimization algorithms for prediction and optimization of flyrock and back-break induced by blasting in ENGINEERING WITH COMPUTERS
  • 2010-01-29. New Triaxial Apparatus for Rocks in ROCK MECHANICS AND ROCK ENGINEERING
  • 2017-11-16. Optimizing an ANN model with ICA for estimating bearing capacity of driven pile in cohesionless soil in ENGINEERING WITH COMPUTERS
  • 2016-10-24. Settlement prediction of the rock-socketed piles through a new technique based on gene expression programming in NEURAL COMPUTING AND APPLICATIONS
  • 2017-06-23. Performance prediction of tunnel boring machine through developing a gene expression programming equation in ENGINEERING WITH COMPUTERS
  • 2015-03-25. Feasibility of ANFIS model for prediction of ground vibrations resulting from quarry blasting in ENVIRONMENTAL EARTH SCIENCES
  • 2017-08-03. A new developed approach for the prediction of ground vibration using a hybrid PSO-optimized ANFIS-based model in ENVIRONMENTAL EARTH SCIENCES
  • 2016-03-28. Feasibility of PSO-ANN model for predicting surface settlement caused by tunneling in ENGINEERING WITH COMPUTERS
  • 2015-10-14. Developing a hybrid PSO–ANN model for estimating the ultimate bearing capacity of rock-socketed piles in NEURAL COMPUTING AND APPLICATIONS
  • 2018-09-18. Estimating and optimizing safety factors of retaining wall through neural network and bee colony techniques in ENGINEERING WITH COMPUTERS
  • 2018-07-28. Predicting tunnel boring machine performance through a new model based on the group method of data handling in BULLETIN OF ENGINEERING GEOLOGY AND THE ENVIRONMENT
  • 2012-04-17. A Neuro-Genetic Network for Predicting Uniaxial Compressive Strength of Rocks in GEOTECHNICAL AND GEOLOGICAL ENGINEERING
  • 2017-11-22. Implementing an ANN model optimized by genetic algorithm for estimating cohesion of limestone samples in ENGINEERING WITH COMPUTERS
  • 2016-11-29. Intelligent modelling of sandstone deformation behaviour using fuzzy logic and neural network systems in BULLETIN OF ENGINEERING GEOLOGY AND THE ENVIRONMENT
  • 2017-11-11. Prediction of bearing capacity of thin-walled foundation: a simulation approach in ENGINEERING WITH COMPUTERS
  • 2017-04-04. An artificial neural network approach for under-reamed piles subjected to uplift forces in dry sand in NEURAL COMPUTING AND APPLICATIONS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00366-018-0672-9

    DOI

    http://dx.doi.org/10.1007/s00366-018-0672-9

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1110638628


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Applied Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0802", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Computation Theory and Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Geotropik-Centre of Tropical Geoengineering, Faculty of Civil Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia", 
              "id": "http://www.grid.ac/institutes/grid.410877.d", 
              "name": [
                "Geotropik-Centre of Tropical Geoengineering, Faculty of Civil Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Murlidhar", 
            "givenName": "Bhatawdekar Ramesh", 
            "id": "sg:person.016001401373.08", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016001401373.08"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Management Sciences, COMSATS University Islamabad, Vehari Campus, Islamabad, Pakistan", 
              "id": "http://www.grid.ac/institutes/grid.418920.6", 
              "name": [
                "Department of Management Sciences, COMSATS University Islamabad, Vehari Campus, Islamabad, Pakistan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ahmed", 
            "givenName": "Munir", 
            "id": "sg:person.012421046233.28", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012421046233.28"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "College of Computing and Informatics, Saudi Electronic University Riyadh, Riyadh, Saudi Arabia", 
              "id": "http://www.grid.ac/institutes/grid.449598.d", 
              "name": [
                "College of Computing and Informatics, Saudi Electronic University Riyadh, Riyadh, Saudi Arabia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mavaluru", 
            "givenName": "Dinesh", 
            "id": "sg:person.011104076767.95", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011104076767.95"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "UCP Business School, University of Central Punjab, Lahore, Pakistan", 
              "id": "http://www.grid.ac/institutes/grid.444936.8", 
              "name": [
                "UCP Business School, University of Central Punjab, Lahore, Pakistan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Siddiqi", 
            "givenName": "Ahmed Faisal", 
            "id": "sg:person.016110627115.43", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016110627115.43"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Geotropik-Centre of Tropical Geoengineering, Faculty of Civil Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia", 
              "id": "http://www.grid.ac/institutes/grid.410877.d", 
              "name": [
                "Geotropik-Centre of Tropical Geoengineering, Faculty of Civil Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mohamad", 
            "givenName": "Edy Tonnizam", 
            "id": "sg:person.010264523752.19", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010264523752.19"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s00521-016-2598-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042598741", 
              "https://doi.org/10.1007/s00521-016-2598-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00521-016-2434-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009507452", 
              "https://doi.org/10.1007/s00521-016-2434-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10845-016-1217-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037227256", 
              "https://doi.org/10.1007/s10845-016-1217-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00366-017-0542-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092648212", 
              "https://doi.org/10.1007/s00366-017-0542-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00366-017-0541-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092912983", 
              "https://doi.org/10.1007/s00366-017-0541-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00366-015-0415-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006981814", 
              "https://doi.org/10.1007/s00366-015-0415-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00521-016-2618-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044893429", 
              "https://doi.org/10.1007/s00521-016-2618-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10706-012-9510-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024901061", 
              "https://doi.org/10.1007/s10706-012-9510-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10064-018-1349-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105883247", 
              "https://doi.org/10.1007/s10064-018-1349-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12145-013-0137-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034654284", 
              "https://doi.org/10.1007/s12145-013-0137-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12517-015-1908-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025927733", 
              "https://doi.org/10.1007/s12517-015-1908-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00366-016-0447-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030807144", 
              "https://doi.org/10.1007/s00366-016-0447-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10064-017-1116-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090314294", 
              "https://doi.org/10.1007/s10064-017-1116-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10706-015-9970-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034231673", 
              "https://doi.org/10.1007/s10706-015-9970-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12665-015-4305-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010124461", 
              "https://doi.org/10.1007/s12665-015-4305-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00366-017-0568-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092907006", 
              "https://doi.org/10.1007/s00366-017-0568-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00366-015-0425-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007184144", 
              "https://doi.org/10.1007/s00366-015-0425-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00603-009-0076-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012065490", 
              "https://doi.org/10.1007/s00603-009-0076-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12665-016-5524-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039856740", 
              "https://doi.org/10.1007/s12665-016-5524-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00366-017-0545-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092707813", 
              "https://doi.org/10.1007/s00366-017-0545-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00366-018-0642-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1107086360", 
              "https://doi.org/10.1007/s00366-018-0642-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00366-018-0625-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105067651", 
              "https://doi.org/10.1007/s00366-018-0625-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00521-015-2072-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023467671", 
              "https://doi.org/10.1007/s00521-015-2072-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00603-013-0377-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050794824", 
              "https://doi.org/10.1007/s00603-013-0377-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00521-016-2577-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019069579", 
              "https://doi.org/10.1007/s00521-016-2577-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00521-016-2456-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008631104", 
              "https://doi.org/10.1007/s00521-016-2456-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10661-018-6719-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1104139713", 
              "https://doi.org/10.1007/s10661-018-6719-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12665-017-6864-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090952199", 
              "https://doi.org/10.1007/s12665-017-6864-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10064-016-0983-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040641339", 
              "https://doi.org/10.1007/s10064-016-0983-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12517-015-1984-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005193044", 
              "https://doi.org/10.1007/s12517-015-1984-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10706-004-7068-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029378913", 
              "https://doi.org/10.1007/s10706-004-7068-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00366-017-0526-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1086143910", 
              "https://doi.org/10.1007/s00366-017-0526-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00521-017-2990-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084517936", 
              "https://doi.org/10.1007/s00521-017-2990-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10845-017-1306-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084027183", 
              "https://doi.org/10.1007/s10845-017-1306-6"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-12-14", 
        "datePublishedReg": "2018-12-14", 
        "description": "Rock shear strength parameters (interlocking and internal friction angel) are considered as significant factors in the designing stage of various geotechnical structures such as tunnels and foundations. Direct determination of these parameters in laboratory is time-consuming and expensive. Additionally, preparation of good quality of core samples is sometimes difficult. The objective of this paper is introducing and evaluating two hybrid artificial neural network (ANN)-based models by considering genetic algorithm (GA) and fuzzy inference system for prediction of interlocking of shale rock samples. Therefore, hybrid GA-ANN and adoptive neuro-fuzzy inference system (ANFIS) were developed and to show the capability of the hybrid models, the predicted results were compared to those of a pre-developed ANN model. In development of these models, the results of rock index tests, i.e., point load index, dry density, p-wave velocity, Brazilian tensile strength and Schmidt hammer were taken into account as the input parameters, whereas the interlocking of the shale samples was set as the output. The results obtained in this study confirmed the high reliability of the developed hybrid models, however, ANFIS predictive model receives slightly higher performance prediction compared to GA-ANN technique. The obtained results of the developed models were (0.865, 0.852), (0.933, 0.929) and (0.957, 0.965) for ANN, GA-ANN and ANFIS models, respectively, based on coefficient of determination (R2). ANFIS can be introduced as an innovative model to the field of rock mechanics.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s00366-018-0672-9", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1041785", 
            "issn": [
              "0177-0667", 
              "1435-5663"
            ], 
            "name": "Engineering with Computers", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "35"
          }
        ], 
        "keywords": [
          "adoptive neuro-fuzzy inference system", 
          "rock index tests", 
          "shear strength parameters", 
          "ANFIS predictive model", 
          "prediction of rock", 
          "pre-developed ANN model", 
          "shale rock samples", 
          "rock shear strength parameters", 
          "Hybrid GA-ANN", 
          "Brazilian tensile strength", 
          "geotechnical structures", 
          "neuro-fuzzy inference system", 
          "point load index", 
          "GA-ANN technique", 
          "inference system", 
          "dry density", 
          "tensile strength", 
          "rock mechanics", 
          "hybrid artificial neural network", 
          "hybrid model", 
          "GA-ANN", 
          "strength parameters", 
          "high performance prediction", 
          "performance prediction", 
          "fuzzy inference system", 
          "designing stage", 
          "genetic algorithm", 
          "ANFIS model", 
          "high reliability", 
          "input parameters", 
          "shale samples", 
          "ANN model", 
          "artificial neural network", 
          "fuzzy systems", 
          "Schmidt hammer", 
          "wave velocity", 
          "rock samples", 
          "core samples", 
          "coefficient of determination", 
          "parameters", 
          "interlocking", 
          "prediction", 
          "index test", 
          "tunnel", 
          "hammer", 
          "neural network", 
          "velocity", 
          "system", 
          "predictive model", 
          "model", 
          "strength", 
          "mechanics", 
          "good quality", 
          "ANN", 
          "capability", 
          "results", 
          "direct determination", 
          "coefficient", 
          "density", 
          "reliability", 
          "output", 
          "field", 
          "structure", 
          "load index", 
          "technique", 
          "determination", 
          "samples", 
          "significant factor", 
          "algorithm", 
          "test", 
          "rocks", 
          "preparation", 
          "account", 
          "network", 
          "laboratory", 
          "foundation", 
          "quality", 
          "objective", 
          "innovative model", 
          "stage", 
          "development", 
          "study", 
          "factors", 
          "index", 
          "paper"
        ], 
        "name": "Prediction of rock interlocking by developing two hybrid models based on GA and fuzzy system", 
        "pagination": "1419-1430", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1110638628"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00366-018-0672-9"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00366-018-0672-9", 
          "https://app.dimensions.ai/details/publication/pub.1110638628"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-05-20T07:34", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_769.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s00366-018-0672-9"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00366-018-0672-9'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00366-018-0672-9'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00366-018-0672-9'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00366-018-0672-9'


     

    This table displays all metadata directly associated to this object as RDF triples.

    328 TRIPLES      22 PREDICATES      147 URIs      102 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00366-018-0672-9 schema:about anzsrc-for:01
    2 anzsrc-for:0102
    3 anzsrc-for:08
    4 anzsrc-for:0801
    5 anzsrc-for:0802
    6 schema:author N221b2794184e456aaa1ecb28f981f408
    7 schema:citation sg:pub.10.1007/s00366-015-0415-0
    8 sg:pub.10.1007/s00366-015-0425-y
    9 sg:pub.10.1007/s00366-016-0447-0
    10 sg:pub.10.1007/s00366-017-0526-x
    11 sg:pub.10.1007/s00366-017-0541-y
    12 sg:pub.10.1007/s00366-017-0542-x
    13 sg:pub.10.1007/s00366-017-0545-7
    14 sg:pub.10.1007/s00366-017-0568-0
    15 sg:pub.10.1007/s00366-018-0625-3
    16 sg:pub.10.1007/s00366-018-0642-2
    17 sg:pub.10.1007/s00521-015-2072-z
    18 sg:pub.10.1007/s00521-016-2434-1
    19 sg:pub.10.1007/s00521-016-2456-8
    20 sg:pub.10.1007/s00521-016-2577-0
    21 sg:pub.10.1007/s00521-016-2598-8
    22 sg:pub.10.1007/s00521-016-2618-8
    23 sg:pub.10.1007/s00521-017-2990-z
    24 sg:pub.10.1007/s00603-009-0076-7
    25 sg:pub.10.1007/s00603-013-0377-8
    26 sg:pub.10.1007/s10064-016-0983-2
    27 sg:pub.10.1007/s10064-017-1116-2
    28 sg:pub.10.1007/s10064-018-1349-8
    29 sg:pub.10.1007/s10661-018-6719-y
    30 sg:pub.10.1007/s10706-004-7068-x
    31 sg:pub.10.1007/s10706-012-9510-9
    32 sg:pub.10.1007/s10706-015-9970-9
    33 sg:pub.10.1007/s10845-016-1217-y
    34 sg:pub.10.1007/s10845-017-1306-6
    35 sg:pub.10.1007/s12145-013-0137-z
    36 sg:pub.10.1007/s12517-015-1908-2
    37 sg:pub.10.1007/s12517-015-1984-3
    38 sg:pub.10.1007/s12665-015-4305-y
    39 sg:pub.10.1007/s12665-016-5524-6
    40 sg:pub.10.1007/s12665-017-6864-6
    41 schema:datePublished 2018-12-14
    42 schema:datePublishedReg 2018-12-14
    43 schema:description Rock shear strength parameters (interlocking and internal friction angel) are considered as significant factors in the designing stage of various geotechnical structures such as tunnels and foundations. Direct determination of these parameters in laboratory is time-consuming and expensive. Additionally, preparation of good quality of core samples is sometimes difficult. The objective of this paper is introducing and evaluating two hybrid artificial neural network (ANN)-based models by considering genetic algorithm (GA) and fuzzy inference system for prediction of interlocking of shale rock samples. Therefore, hybrid GA-ANN and adoptive neuro-fuzzy inference system (ANFIS) were developed and to show the capability of the hybrid models, the predicted results were compared to those of a pre-developed ANN model. In development of these models, the results of rock index tests, i.e., point load index, dry density, p-wave velocity, Brazilian tensile strength and Schmidt hammer were taken into account as the input parameters, whereas the interlocking of the shale samples was set as the output. The results obtained in this study confirmed the high reliability of the developed hybrid models, however, ANFIS predictive model receives slightly higher performance prediction compared to GA-ANN technique. The obtained results of the developed models were (0.865, 0.852), (0.933, 0.929) and (0.957, 0.965) for ANN, GA-ANN and ANFIS models, respectively, based on coefficient of determination (R2). ANFIS can be introduced as an innovative model to the field of rock mechanics.
    44 schema:genre article
    45 schema:inLanguage en
    46 schema:isAccessibleForFree false
    47 schema:isPartOf Nc2371ab162c64bd184d97aa875af80bf
    48 Nf305f8345ac44ed6b99b7f107b12394f
    49 sg:journal.1041785
    50 schema:keywords ANFIS model
    51 ANFIS predictive model
    52 ANN
    53 ANN model
    54 Brazilian tensile strength
    55 GA-ANN
    56 GA-ANN technique
    57 Hybrid GA-ANN
    58 Schmidt hammer
    59 account
    60 adoptive neuro-fuzzy inference system
    61 algorithm
    62 artificial neural network
    63 capability
    64 coefficient
    65 coefficient of determination
    66 core samples
    67 density
    68 designing stage
    69 determination
    70 development
    71 direct determination
    72 dry density
    73 factors
    74 field
    75 foundation
    76 fuzzy inference system
    77 fuzzy systems
    78 genetic algorithm
    79 geotechnical structures
    80 good quality
    81 hammer
    82 high performance prediction
    83 high reliability
    84 hybrid artificial neural network
    85 hybrid model
    86 index
    87 index test
    88 inference system
    89 innovative model
    90 input parameters
    91 interlocking
    92 laboratory
    93 load index
    94 mechanics
    95 model
    96 network
    97 neural network
    98 neuro-fuzzy inference system
    99 objective
    100 output
    101 paper
    102 parameters
    103 performance prediction
    104 point load index
    105 pre-developed ANN model
    106 prediction
    107 prediction of rock
    108 predictive model
    109 preparation
    110 quality
    111 reliability
    112 results
    113 rock index tests
    114 rock mechanics
    115 rock samples
    116 rock shear strength parameters
    117 rocks
    118 samples
    119 shale rock samples
    120 shale samples
    121 shear strength parameters
    122 significant factor
    123 stage
    124 strength
    125 strength parameters
    126 structure
    127 study
    128 system
    129 technique
    130 tensile strength
    131 test
    132 tunnel
    133 velocity
    134 wave velocity
    135 schema:name Prediction of rock interlocking by developing two hybrid models based on GA and fuzzy system
    136 schema:pagination 1419-1430
    137 schema:productId N7ae8959bf9cf4a3895cb400e407fbdf9
    138 N873102941f124290ac2fb1527ea8a46d
    139 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110638628
    140 https://doi.org/10.1007/s00366-018-0672-9
    141 schema:sdDatePublished 2022-05-20T07:34
    142 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    143 schema:sdPublisher N618386339b0c4006b37c553080ea6357
    144 schema:url https://doi.org/10.1007/s00366-018-0672-9
    145 sgo:license sg:explorer/license/
    146 sgo:sdDataset articles
    147 rdf:type schema:ScholarlyArticle
    148 N1e1175301b5f478c84d7528c14850d10 rdf:first sg:person.016110627115.43
    149 rdf:rest Nbc9d33b333f0408793264c3f5fb56cfd
    150 N221b2794184e456aaa1ecb28f981f408 rdf:first sg:person.016001401373.08
    151 rdf:rest N64daaa7fd16b428691ff8bfbed24aa9a
    152 N618386339b0c4006b37c553080ea6357 schema:name Springer Nature - SN SciGraph project
    153 rdf:type schema:Organization
    154 N64daaa7fd16b428691ff8bfbed24aa9a rdf:first sg:person.012421046233.28
    155 rdf:rest Nbc92973672a4401aac7d34885ae3fe3b
    156 N7ae8959bf9cf4a3895cb400e407fbdf9 schema:name dimensions_id
    157 schema:value pub.1110638628
    158 rdf:type schema:PropertyValue
    159 N873102941f124290ac2fb1527ea8a46d schema:name doi
    160 schema:value 10.1007/s00366-018-0672-9
    161 rdf:type schema:PropertyValue
    162 Nbc92973672a4401aac7d34885ae3fe3b rdf:first sg:person.011104076767.95
    163 rdf:rest N1e1175301b5f478c84d7528c14850d10
    164 Nbc9d33b333f0408793264c3f5fb56cfd rdf:first sg:person.010264523752.19
    165 rdf:rest rdf:nil
    166 Nc2371ab162c64bd184d97aa875af80bf schema:issueNumber 4
    167 rdf:type schema:PublicationIssue
    168 Nf305f8345ac44ed6b99b7f107b12394f schema:volumeNumber 35
    169 rdf:type schema:PublicationVolume
    170 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    171 schema:name Mathematical Sciences
    172 rdf:type schema:DefinedTerm
    173 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
    174 schema:name Applied Mathematics
    175 rdf:type schema:DefinedTerm
    176 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    177 schema:name Information and Computing Sciences
    178 rdf:type schema:DefinedTerm
    179 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    180 schema:name Artificial Intelligence and Image Processing
    181 rdf:type schema:DefinedTerm
    182 anzsrc-for:0802 schema:inDefinedTermSet anzsrc-for:
    183 schema:name Computation Theory and Mathematics
    184 rdf:type schema:DefinedTerm
    185 sg:journal.1041785 schema:issn 0177-0667
    186 1435-5663
    187 schema:name Engineering with Computers
    188 schema:publisher Springer Nature
    189 rdf:type schema:Periodical
    190 sg:person.010264523752.19 schema:affiliation grid-institutes:grid.410877.d
    191 schema:familyName Mohamad
    192 schema:givenName Edy Tonnizam
    193 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010264523752.19
    194 rdf:type schema:Person
    195 sg:person.011104076767.95 schema:affiliation grid-institutes:grid.449598.d
    196 schema:familyName Mavaluru
    197 schema:givenName Dinesh
    198 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011104076767.95
    199 rdf:type schema:Person
    200 sg:person.012421046233.28 schema:affiliation grid-institutes:grid.418920.6
    201 schema:familyName Ahmed
    202 schema:givenName Munir
    203 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012421046233.28
    204 rdf:type schema:Person
    205 sg:person.016001401373.08 schema:affiliation grid-institutes:grid.410877.d
    206 schema:familyName Murlidhar
    207 schema:givenName Bhatawdekar Ramesh
    208 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016001401373.08
    209 rdf:type schema:Person
    210 sg:person.016110627115.43 schema:affiliation grid-institutes:grid.444936.8
    211 schema:familyName Siddiqi
    212 schema:givenName Ahmed Faisal
    213 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016110627115.43
    214 rdf:type schema:Person
    215 sg:pub.10.1007/s00366-015-0415-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006981814
    216 https://doi.org/10.1007/s00366-015-0415-0
    217 rdf:type schema:CreativeWork
    218 sg:pub.10.1007/s00366-015-0425-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1007184144
    219 https://doi.org/10.1007/s00366-015-0425-y
    220 rdf:type schema:CreativeWork
    221 sg:pub.10.1007/s00366-016-0447-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030807144
    222 https://doi.org/10.1007/s00366-016-0447-0
    223 rdf:type schema:CreativeWork
    224 sg:pub.10.1007/s00366-017-0526-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1086143910
    225 https://doi.org/10.1007/s00366-017-0526-x
    226 rdf:type schema:CreativeWork
    227 sg:pub.10.1007/s00366-017-0541-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1092912983
    228 https://doi.org/10.1007/s00366-017-0541-y
    229 rdf:type schema:CreativeWork
    230 sg:pub.10.1007/s00366-017-0542-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1092648212
    231 https://doi.org/10.1007/s00366-017-0542-x
    232 rdf:type schema:CreativeWork
    233 sg:pub.10.1007/s00366-017-0545-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092707813
    234 https://doi.org/10.1007/s00366-017-0545-7
    235 rdf:type schema:CreativeWork
    236 sg:pub.10.1007/s00366-017-0568-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092907006
    237 https://doi.org/10.1007/s00366-017-0568-0
    238 rdf:type schema:CreativeWork
    239 sg:pub.10.1007/s00366-018-0625-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105067651
    240 https://doi.org/10.1007/s00366-018-0625-3
    241 rdf:type schema:CreativeWork
    242 sg:pub.10.1007/s00366-018-0642-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107086360
    243 https://doi.org/10.1007/s00366-018-0642-2
    244 rdf:type schema:CreativeWork
    245 sg:pub.10.1007/s00521-015-2072-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1023467671
    246 https://doi.org/10.1007/s00521-015-2072-z
    247 rdf:type schema:CreativeWork
    248 sg:pub.10.1007/s00521-016-2434-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009507452
    249 https://doi.org/10.1007/s00521-016-2434-1
    250 rdf:type schema:CreativeWork
    251 sg:pub.10.1007/s00521-016-2456-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008631104
    252 https://doi.org/10.1007/s00521-016-2456-8
    253 rdf:type schema:CreativeWork
    254 sg:pub.10.1007/s00521-016-2577-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019069579
    255 https://doi.org/10.1007/s00521-016-2577-0
    256 rdf:type schema:CreativeWork
    257 sg:pub.10.1007/s00521-016-2598-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042598741
    258 https://doi.org/10.1007/s00521-016-2598-8
    259 rdf:type schema:CreativeWork
    260 sg:pub.10.1007/s00521-016-2618-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044893429
    261 https://doi.org/10.1007/s00521-016-2618-8
    262 rdf:type schema:CreativeWork
    263 sg:pub.10.1007/s00521-017-2990-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1084517936
    264 https://doi.org/10.1007/s00521-017-2990-z
    265 rdf:type schema:CreativeWork
    266 sg:pub.10.1007/s00603-009-0076-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012065490
    267 https://doi.org/10.1007/s00603-009-0076-7
    268 rdf:type schema:CreativeWork
    269 sg:pub.10.1007/s00603-013-0377-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050794824
    270 https://doi.org/10.1007/s00603-013-0377-8
    271 rdf:type schema:CreativeWork
    272 sg:pub.10.1007/s10064-016-0983-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040641339
    273 https://doi.org/10.1007/s10064-016-0983-2
    274 rdf:type schema:CreativeWork
    275 sg:pub.10.1007/s10064-017-1116-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090314294
    276 https://doi.org/10.1007/s10064-017-1116-2
    277 rdf:type schema:CreativeWork
    278 sg:pub.10.1007/s10064-018-1349-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105883247
    279 https://doi.org/10.1007/s10064-018-1349-8
    280 rdf:type schema:CreativeWork
    281 sg:pub.10.1007/s10661-018-6719-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1104139713
    282 https://doi.org/10.1007/s10661-018-6719-y
    283 rdf:type schema:CreativeWork
    284 sg:pub.10.1007/s10706-004-7068-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1029378913
    285 https://doi.org/10.1007/s10706-004-7068-x
    286 rdf:type schema:CreativeWork
    287 sg:pub.10.1007/s10706-012-9510-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024901061
    288 https://doi.org/10.1007/s10706-012-9510-9
    289 rdf:type schema:CreativeWork
    290 sg:pub.10.1007/s10706-015-9970-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034231673
    291 https://doi.org/10.1007/s10706-015-9970-9
    292 rdf:type schema:CreativeWork
    293 sg:pub.10.1007/s10845-016-1217-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1037227256
    294 https://doi.org/10.1007/s10845-016-1217-y
    295 rdf:type schema:CreativeWork
    296 sg:pub.10.1007/s10845-017-1306-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084027183
    297 https://doi.org/10.1007/s10845-017-1306-6
    298 rdf:type schema:CreativeWork
    299 sg:pub.10.1007/s12145-013-0137-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1034654284
    300 https://doi.org/10.1007/s12145-013-0137-z
    301 rdf:type schema:CreativeWork
    302 sg:pub.10.1007/s12517-015-1908-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025927733
    303 https://doi.org/10.1007/s12517-015-1908-2
    304 rdf:type schema:CreativeWork
    305 sg:pub.10.1007/s12517-015-1984-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005193044
    306 https://doi.org/10.1007/s12517-015-1984-3
    307 rdf:type schema:CreativeWork
    308 sg:pub.10.1007/s12665-015-4305-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1010124461
    309 https://doi.org/10.1007/s12665-015-4305-y
    310 rdf:type schema:CreativeWork
    311 sg:pub.10.1007/s12665-016-5524-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039856740
    312 https://doi.org/10.1007/s12665-016-5524-6
    313 rdf:type schema:CreativeWork
    314 sg:pub.10.1007/s12665-017-6864-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090952199
    315 https://doi.org/10.1007/s12665-017-6864-6
    316 rdf:type schema:CreativeWork
    317 grid-institutes:grid.410877.d schema:alternateName Geotropik-Centre of Tropical Geoengineering, Faculty of Civil Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
    318 schema:name Geotropik-Centre of Tropical Geoengineering, Faculty of Civil Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
    319 rdf:type schema:Organization
    320 grid-institutes:grid.418920.6 schema:alternateName Department of Management Sciences, COMSATS University Islamabad, Vehari Campus, Islamabad, Pakistan
    321 schema:name Department of Management Sciences, COMSATS University Islamabad, Vehari Campus, Islamabad, Pakistan
    322 rdf:type schema:Organization
    323 grid-institutes:grid.444936.8 schema:alternateName UCP Business School, University of Central Punjab, Lahore, Pakistan
    324 schema:name UCP Business School, University of Central Punjab, Lahore, Pakistan
    325 rdf:type schema:Organization
    326 grid-institutes:grid.449598.d schema:alternateName College of Computing and Informatics, Saudi Electronic University Riyadh, Riyadh, Saudi Arabia
    327 schema:name College of Computing and Informatics, Saudi Electronic University Riyadh, Riyadh, Saudi Arabia
    328 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...