Overbreak prediction and optimization in tunnel using neural network and bee colony techniques View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-10-24

AUTHORS

Mohammadreza Koopialipoor, Ebrahim Noroozi Ghaleini, Mojtaba Haghighi, Sujith Kanagarajan, Parviz Maarefvand, Edy Tonnizam Mohamad

ABSTRACT

Overbreak is an undesirable phenomenon in blasting operations. The causing factors of overbreak can be generally divided as blasting and geological parameters. Due to multiplicity of effective parameters and complexity of interactions among these parameters, empirical methods may not be fully appropriated for blasting pattern design. In this research, artificial neural network (ANN) as a powerful tool for solving such complicated problems is developed to predict overbreak induced by blasting operations in the Gardaneh Rokh tunnel, Iran. To develop an ANN model, an established database comprising of 255 datasets has been utilized. A three-layer ANN was found as an optimum model for prediction of overbreak. The coefficient of determination (R2) and root mean square error (RMSE) values of the selected model were obtained as 0.921, 0.4820, 0.923 and 0.4277 for training and testing, respectively, which demonstrate a high capability of ANN in predicting overbreak. After selecting the best model, the selected model was used for optimization purpose using artificial bee colony (ABC) algorithm as one of the most powerful optimization algorithms. Considering this point that overbreak is one of the main problems in tunneling, reducing its amount causes to have a good tunneling operation. After making several models of optimization and variations in its weights, the optimum amount for the extra drilling was 1.63 m2, which is 47% lower than the lowest value (3.055 m2). It can be concluded that ABC algorithm can be introduced as a new optimizing algorithm to minimize overbreak induced by tunneling. More... »

PAGES

1191-1202

References to SciGraph publications

  • 2016-06-17. Application of PSO to develop a powerful equation for prediction of flyrock due to blasting in NEURAL COMPUTING AND APPLICATIONS
  • 2012-11-09. Multiple regression, ANN and ANFIS models for prediction of backbreak in the open pit blasting in ENGINEERING WITH COMPUTERS
  • 2015-12-18. Prediction of Drillability of Rocks with Strength Properties Using a Hybrid GA-ANN Technique in GEOTECHNICAL AND GEOLOGICAL ENGINEERING
  • 2018-06-22. A combination of artificial bee colony and neural network for approximating the safety factor of retaining walls in ENGINEERING WITH COMPUTERS
  • 2015-10-31. Several non-linear models in estimating air-overpressure resulting from mine blasting in ENGINEERING WITH COMPUTERS
  • 2017-07-17. Prediction of an environmental issue of mine blasting: an imperialistic competitive algorithm-based fuzzy system in INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCE AND TECHNOLOGY
  • 2018-07-28. Predicting tunnel boring machine performance through a new model based on the group method of data handling in BULLETIN OF ENGINEERING GEOLOGY AND THE ENVIRONMENT
  • 2016-04-28. Prediction of air-overpressure caused by mine blasting using a new hybrid PSO–SVR model in ENGINEERING WITH COMPUTERS
  • 2016-05-25. Risk Assessment and Prediction of Flyrock Distance by Combined Multiple Regression Analysis and Monte Carlo Simulation of Quarry Blasting in ROCK MECHANICS AND ROCK ENGINEERING
  • 2013-01-08. Calculation of surface settlements caused by EPBM tunneling using artificial neural network, SVM, and Gaussian processes in ENVIRONMENTAL EARTH SCIENCES
  • 2017-07-01. A neuro-genetic predictive model to approximate overbreak induced by drilling and blasting operation in tunnels in BULLETIN OF ENGINEERING GEOLOGY AND THE ENVIRONMENT
  • 2016-12-24. Development of a precise model for prediction of blast-induced flyrock using regression tree technique in ENVIRONMENTAL EARTH SCIENCES
  • 1996-12. Overbreak and underbreak in underground openings Part 2: causes and implications in GEOTECHNICAL AND GEOLOGICAL ENGINEERING
  • 2018-01-16. A Risk-Based Technique to Analyze Flyrock Results Through Rock Engineering System in GEOTECHNICAL AND GEOLOGICAL ENGINEERING
  • 2016-12-24. A hybrid artificial bee colony algorithm-artificial neural network for forecasting the blast-produced ground vibration in ENGINEERING WITH COMPUTERS
  • 2015-02-18. Prediction of seismic slope stability through combination of particle swarm optimization and neural network in ENGINEERING WITH COMPUTERS
  • 2004-05-04. Human response to blast-induced vibration and air-overpressure: an Indian scenario in BULLETIN OF ENGINEERING GEOLOGY AND THE ENVIRONMENT
  • 2016-09-14. Airblast prediction through a hybrid genetic algorithm-ANN model in NEURAL COMPUTING AND APPLICATIONS
  • 2015-03-17. Blast-induced air and ground vibration prediction: a particle swarm optimization-based artificial neural network approach in ENVIRONMENTAL EARTH SCIENCES
  • 2016-03-29. The Application of Artificial Bee Colony and Gravitational Search Algorithm in Reservoir Optimization in WATER RESOURCES MANAGEMENT
  • 2015-04-25. Application of two intelligent systems in predicting environmental impacts of quarry blasting in ARABIAN JOURNAL OF GEOSCIENCES
  • 2016-02-29. A new combination of artificial neural network and K-nearest neighbors models to predict blast-induced ground vibration and air-overpressure in ENGINEERING WITH COMPUTERS
  • 2014-03-14. Flyrock in bench blasting: a comprehensive review in BULLETIN OF ENGINEERING GEOLOGY AND THE ENVIRONMENT
  • 1943-12. A logical calculus of the ideas immanent in nervous activity in BULLETIN OF MATHEMATICAL BIOLOGY
  • 2018-01-16. Proposing a novel hybrid intelligent model for the simulation of particle size distribution resulting from blasting in ENGINEERING WITH COMPUTERS
  • 2015-09-12. Combination of neural network and ant colony optimization algorithms for prediction and optimization of flyrock and back-break induced by blasting in ENGINEERING WITH COMPUTERS
  • 2007-04-13. A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm in JOURNAL OF GLOBAL OPTIMIZATION
  • 1993. Statistical aspects of neural networks in NETWORKS AND CHAOS — STATISTICAL AND PROBABILISTIC ASPECTS
  • 2012. An Artificial Bee Colony Algorithm for the Unrelated Parallel Machines Scheduling Problem in PARALLEL PROBLEM SOLVING FROM NATURE - PPSN XII
  • 2016-08-30. Forecasting blast-induced ground vibration developing a CART model in ENGINEERING WITH COMPUTERS
  • 2018-03-03. Three hybrid intelligent models in estimating flyrock distance resulting from blasting in ENGINEERING WITH COMPUTERS
  • 2016-03-28. Feasibility of PSO-ANN model for predicting surface settlement caused by tunneling in ENGINEERING WITH COMPUTERS
  • 2015-01-30. Prediction and optimization of back-break and rock fragmentation using an artificial neural network and a bee colony algorithm in BULLETIN OF ENGINEERING GEOLOGY AND THE ENVIRONMENT
  • 2018-09-18. Estimating and optimizing safety factors of retaining wall through neural network and bee colony techniques in ENGINEERING WITH COMPUTERS
  • 2018-05-28. Applying various hybrid intelligent systems to evaluate and predict slope stability under static and dynamic conditions in SOFT COMPUTING
  • 2012-07-12. Backbreak prediction in the Chadormalu iron mine using artificial neural network in NEURAL COMPUTING AND APPLICATIONS
  • 2015-06-18. A combination of the ICA-ANN model to predict air-overpressure resulting from blasting in ENGINEERING WITH COMPUTERS
  • 2015-03-20. Evaluation and prediction of flyrock resulting from blasting operations using empirical and computational methods in ENGINEERING WITH COMPUTERS
  • 2015-05-20. Application of fuzzy inference system for prediction of rock fragmentation induced by blasting in ARABIAN JOURNAL OF GEOSCIENCES
  • 2012-02-18. Evaluation and prediction of blast-induced ground vibration at Shur River Dam, Iran, by artificial neural network in NEURAL COMPUTING AND APPLICATIONS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00366-018-0658-7

    DOI

    http://dx.doi.org/10.1007/s00366-018-0658-7

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1107828519


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Faculty of Civil and Environmental Engineering, Amirkabir University of Technology, 15914, Tehran, Iran", 
              "id": "http://www.grid.ac/institutes/grid.411368.9", 
              "name": [
                "Faculty of Civil and Environmental Engineering, Amirkabir University of Technology, 15914, Tehran, Iran"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Koopialipoor", 
            "givenName": "Mohammadreza", 
            "id": "sg:person.012061617153.66", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012061617153.66"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Faculty of Mining and Metallurgy, Amirkabir University of Technology, Tehran, Iran", 
              "id": "http://www.grid.ac/institutes/grid.411368.9", 
              "name": [
                "Faculty of Mining and Metallurgy, Amirkabir University of Technology, Tehran, Iran"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ghaleini", 
            "givenName": "Ebrahim Noroozi", 
            "id": "sg:person.014252140553.62", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014252140553.62"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Faculty of Mining and Metallurgy, Amirkabir University of Technology, Tehran, Iran", 
              "id": "http://www.grid.ac/institutes/grid.411368.9", 
              "name": [
                "Faculty of Mining and Metallurgy, Amirkabir University of Technology, Tehran, Iran"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Haghighi", 
            "givenName": "Mojtaba", 
            "id": "sg:person.013454560153.70", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013454560153.70"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Computer Science, Annai Vailankanni Arts and Science College, (Affiliated to Bharathidhasan University), 613007, Thanjavur, Tamilnadu, India", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Department of Computer Science, Annai Vailankanni Arts and Science College, (Affiliated to Bharathidhasan University), 613007, Thanjavur, Tamilnadu, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kanagarajan", 
            "givenName": "Sujith", 
            "id": "sg:person.07670010105.63", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07670010105.63"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Faculty of Mining and Metallurgy, Amirkabir University of Technology, Tehran, Iran", 
              "id": "http://www.grid.ac/institutes/grid.411368.9", 
              "name": [
                "Faculty of Mining and Metallurgy, Amirkabir University of Technology, Tehran, Iran"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Maarefvand", 
            "givenName": "Parviz", 
            "id": "sg:person.07556657237.27", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07556657237.27"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Centre of Tropical Geoengineering (GEOTROPIK), Faculty of Civil Engineering, Universiti Teknologi Malaysia, 81310, Johor, Malaysia", 
              "id": "http://www.grid.ac/institutes/grid.410877.d", 
              "name": [
                "Centre of Tropical Geoengineering (GEOTROPIK), Faculty of Civil Engineering, Universiti Teknologi Malaysia, 81310, Johor, Malaysia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mohamad", 
            "givenName": "Edy Tonnizam", 
            "id": "sg:person.010264523752.19", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010264523752.19"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf02478259", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028715170", 
              "https://doi.org/10.1007/bf02478259"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00366-016-0447-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030807144", 
              "https://doi.org/10.1007/s00366-016-0447-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00366-015-0400-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003281017", 
              "https://doi.org/10.1007/s00366-015-0400-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00521-016-2598-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042598741", 
              "https://doi.org/10.1007/s00521-016-2598-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00366-016-0497-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053003292", 
              "https://doi.org/10.1007/s00366-016-0497-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10706-015-9970-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034231673", 
              "https://doi.org/10.1007/s10706-015-9970-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00366-018-0642-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1107086360", 
              "https://doi.org/10.1007/s00366-018-0642-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12517-015-1952-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029920407", 
              "https://doi.org/10.1007/s12517-015-1952-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00366-018-0596-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101330868", 
              "https://doi.org/10.1007/s00366-018-0596-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12665-012-2214-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020162888", 
              "https://doi.org/10.1007/s12665-012-2214-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12665-015-4274-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030000705", 
              "https://doi.org/10.1007/s12665-015-4274-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00521-012-0856-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006773113", 
              "https://doi.org/10.1007/s00521-012-0856-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00421947", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018271521", 
              "https://doi.org/10.1007/bf00421947"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10064-018-1349-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105883247", 
              "https://doi.org/10.1007/s10064-018-1349-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00366-015-0408-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031058347", 
              "https://doi.org/10.1007/s00366-015-0408-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10064-015-0720-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042960605", 
              "https://doi.org/10.1007/s10064-015-0720-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10064-014-0588-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002537991", 
              "https://doi.org/10.1007/s10064-014-0588-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00521-016-2434-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009507452", 
              "https://doi.org/10.1007/s00521-016-2434-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00366-015-0425-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007184144", 
              "https://doi.org/10.1007/s00366-015-0425-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00366-016-0442-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042559958", 
              "https://doi.org/10.1007/s00366-016-0442-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00366-015-0415-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006981814", 
              "https://doi.org/10.1007/s00366-015-0415-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00366-015-0402-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022416262", 
              "https://doi.org/10.1007/s00366-015-0402-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12665-016-6335-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009284080", 
              "https://doi.org/10.1007/s12665-016-6335-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00366-016-0453-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013450683", 
              "https://doi.org/10.1007/s00366-016-0453-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00521-012-1038-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016800802", 
              "https://doi.org/10.1007/s00521-012-1038-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00366-018-0625-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105067651", 
              "https://doi.org/10.1007/s00366-018-0625-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10706-018-0459-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100424638", 
              "https://doi.org/10.1007/s10706-018-0459-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00366-012-0298-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042514146", 
              "https://doi.org/10.1007/s00366-012-0298-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10064-017-1116-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090314294", 
              "https://doi.org/10.1007/s10064-017-1116-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00500-018-3253-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1104266062", 
              "https://doi.org/10.1007/s00500-018-3253-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s13762-017-1395-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090744847", 
              "https://doi.org/10.1007/s13762-017-1395-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10064-004-0228-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028059003", 
              "https://doi.org/10.1007/s10064-004-0228-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00366-016-0475-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027652714", 
              "https://doi.org/10.1007/s00366-016-0475-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00603-016-1015-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033227644", 
              "https://doi.org/10.1007/s00603-016-1015-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10898-007-9149-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049543869", 
              "https://doi.org/10.1007/s10898-007-9149-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00366-018-0582-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100424456", 
              "https://doi.org/10.1007/s00366-018-0582-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11269-016-1304-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000974137", 
              "https://doi.org/10.1007/s11269-016-1304-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12517-015-1908-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025927733", 
              "https://doi.org/10.1007/s12517-015-1908-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4899-3099-6_2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1089745563", 
              "https://doi.org/10.1007/978-1-4899-3099-6_2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-32964-7_15", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001473417", 
              "https://doi.org/10.1007/978-3-642-32964-7_15"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-10-24", 
        "datePublishedReg": "2018-10-24", 
        "description": "Overbreak is an undesirable phenomenon in blasting operations. The causing factors of overbreak can be generally divided as blasting and geological parameters. Due to multiplicity of effective parameters and complexity of interactions among these parameters, empirical methods may not be fully appropriated for blasting pattern design. In this research, artificial neural network (ANN) as a powerful tool for solving such complicated problems is developed to predict overbreak induced by blasting operations in the Gardaneh Rokh tunnel, Iran. To develop an ANN model, an established database comprising of 255 datasets has been utilized. A three-layer ANN was found as an optimum model for prediction of overbreak. The coefficient of determination (R2) and root mean square error (RMSE) values of the selected model were obtained as 0.921, 0.4820, 0.923 and 0.4277 for training and testing, respectively, which demonstrate a high capability of ANN in predicting overbreak. After selecting the best model, the selected model was used for optimization purpose using artificial bee colony (ABC) algorithm as one of the most powerful optimization algorithms. Considering this point that overbreak is one of the main problems in tunneling, reducing its amount causes to have a good tunneling operation. After making several models of optimization and variations in its weights, the optimum amount for the extra drilling was 1.63\u00a0m2, which is 47% lower than the lowest value (3.055\u00a0m2). It can be concluded that ABC algorithm can be introduced as a new optimizing algorithm to minimize overbreak induced by tunneling.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s00366-018-0658-7", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1041785", 
            "issn": [
              "0177-0667", 
              "1435-5663"
            ], 
            "name": "Engineering with Computers", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "35"
          }
        ], 
        "keywords": [
          "artificial neural network", 
          "neural network", 
          "three-layer artificial neural network", 
          "artificial bee colony algorithm", 
          "bee colony algorithm", 
          "new optimizing algorithm", 
          "powerful optimization algorithm", 
          "such complicated problems", 
          "ABC algorithm", 
          "mean square error values", 
          "database comprising", 
          "colony algorithm", 
          "overbreak prediction", 
          "ANN model", 
          "optimizing algorithm", 
          "optimization algorithm", 
          "algorithm", 
          "model of optimization", 
          "complicated problem", 
          "network", 
          "square error values", 
          "pattern design", 
          "optimization purposes", 
          "main problems", 
          "error values", 
          "complexity of interactions", 
          "root mean square error (RMSE) values", 
          "extra drilling", 
          "colony technique", 
          "high capability", 
          "optimization", 
          "operation", 
          "dataset", 
          "optimum model", 
          "powerful tool", 
          "best model", 
          "complexity", 
          "model", 
          "capability", 
          "tool", 
          "prediction", 
          "design", 
          "tunneling operations", 
          "coefficient of determination", 
          "technique", 
          "empirical methods", 
          "training", 
          "geological parameters", 
          "method", 
          "parameters", 
          "research", 
          "comprising", 
          "point", 
          "undesirable phenomenon", 
          "effective parameters", 
          "purpose", 
          "amount", 
          "testing", 
          "problem", 
          "interaction", 
          "values", 
          "tunneling", 
          "overbreak", 
          "tunnel", 
          "coefficient", 
          "phenomenon", 
          "multiplicity", 
          "weight", 
          "lower values", 
          "variation", 
          "drilling", 
          "factors", 
          "determination", 
          "Iran", 
          "cause", 
          "optimum amount", 
          "m2"
        ], 
        "name": "Overbreak prediction and optimization in tunnel using neural network and bee colony techniques", 
        "pagination": "1191-1202", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1107828519"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00366-018-0658-7"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00366-018-0658-7", 
          "https://app.dimensions.ai/details/publication/pub.1107828519"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-05-20T07:34", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_771.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s00366-018-0658-7"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00366-018-0658-7'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00366-018-0658-7'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00366-018-0658-7'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00366-018-0658-7'


     

    This table displays all metadata directly associated to this object as RDF triples.

    338 TRIPLES      22 PREDICATES      142 URIs      94 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00366-018-0658-7 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author N94fb6babd6b64c56934f2c4697167850
    4 schema:citation sg:pub.10.1007/978-1-4899-3099-6_2
    5 sg:pub.10.1007/978-3-642-32964-7_15
    6 sg:pub.10.1007/bf00421947
    7 sg:pub.10.1007/bf02478259
    8 sg:pub.10.1007/s00366-012-0298-2
    9 sg:pub.10.1007/s00366-015-0400-7
    10 sg:pub.10.1007/s00366-015-0402-5
    11 sg:pub.10.1007/s00366-015-0408-z
    12 sg:pub.10.1007/s00366-015-0415-0
    13 sg:pub.10.1007/s00366-015-0425-y
    14 sg:pub.10.1007/s00366-016-0442-5
    15 sg:pub.10.1007/s00366-016-0447-0
    16 sg:pub.10.1007/s00366-016-0453-2
    17 sg:pub.10.1007/s00366-016-0475-9
    18 sg:pub.10.1007/s00366-016-0497-3
    19 sg:pub.10.1007/s00366-018-0582-x
    20 sg:pub.10.1007/s00366-018-0596-4
    21 sg:pub.10.1007/s00366-018-0625-3
    22 sg:pub.10.1007/s00366-018-0642-2
    23 sg:pub.10.1007/s00500-018-3253-3
    24 sg:pub.10.1007/s00521-012-0856-y
    25 sg:pub.10.1007/s00521-012-1038-7
    26 sg:pub.10.1007/s00521-016-2434-1
    27 sg:pub.10.1007/s00521-016-2598-8
    28 sg:pub.10.1007/s00603-016-1015-z
    29 sg:pub.10.1007/s10064-004-0228-7
    30 sg:pub.10.1007/s10064-014-0588-6
    31 sg:pub.10.1007/s10064-015-0720-2
    32 sg:pub.10.1007/s10064-017-1116-2
    33 sg:pub.10.1007/s10064-018-1349-8
    34 sg:pub.10.1007/s10706-015-9970-9
    35 sg:pub.10.1007/s10706-018-0459-1
    36 sg:pub.10.1007/s10898-007-9149-x
    37 sg:pub.10.1007/s11269-016-1304-z
    38 sg:pub.10.1007/s12517-015-1908-2
    39 sg:pub.10.1007/s12517-015-1952-y
    40 sg:pub.10.1007/s12665-012-2214-x
    41 sg:pub.10.1007/s12665-015-4274-1
    42 sg:pub.10.1007/s12665-016-6335-5
    43 sg:pub.10.1007/s13762-017-1395-y
    44 schema:datePublished 2018-10-24
    45 schema:datePublishedReg 2018-10-24
    46 schema:description Overbreak is an undesirable phenomenon in blasting operations. The causing factors of overbreak can be generally divided as blasting and geological parameters. Due to multiplicity of effective parameters and complexity of interactions among these parameters, empirical methods may not be fully appropriated for blasting pattern design. In this research, artificial neural network (ANN) as a powerful tool for solving such complicated problems is developed to predict overbreak induced by blasting operations in the Gardaneh Rokh tunnel, Iran. To develop an ANN model, an established database comprising of 255 datasets has been utilized. A three-layer ANN was found as an optimum model for prediction of overbreak. The coefficient of determination (R2) and root mean square error (RMSE) values of the selected model were obtained as 0.921, 0.4820, 0.923 and 0.4277 for training and testing, respectively, which demonstrate a high capability of ANN in predicting overbreak. After selecting the best model, the selected model was used for optimization purpose using artificial bee colony (ABC) algorithm as one of the most powerful optimization algorithms. Considering this point that overbreak is one of the main problems in tunneling, reducing its amount causes to have a good tunneling operation. After making several models of optimization and variations in its weights, the optimum amount for the extra drilling was 1.63 m2, which is 47% lower than the lowest value (3.055 m2). It can be concluded that ABC algorithm can be introduced as a new optimizing algorithm to minimize overbreak induced by tunneling.
    47 schema:genre article
    48 schema:inLanguage en
    49 schema:isAccessibleForFree false
    50 schema:isPartOf N24564ef0376e4da58f668e80397e938b
    51 Nfc8976fc0b9c4c8c971df86f878be55e
    52 sg:journal.1041785
    53 schema:keywords ABC algorithm
    54 ANN model
    55 Iran
    56 algorithm
    57 amount
    58 artificial bee colony algorithm
    59 artificial neural network
    60 bee colony algorithm
    61 best model
    62 capability
    63 cause
    64 coefficient
    65 coefficient of determination
    66 colony algorithm
    67 colony technique
    68 complexity
    69 complexity of interactions
    70 complicated problem
    71 comprising
    72 database comprising
    73 dataset
    74 design
    75 determination
    76 drilling
    77 effective parameters
    78 empirical methods
    79 error values
    80 extra drilling
    81 factors
    82 geological parameters
    83 high capability
    84 interaction
    85 lower values
    86 m2
    87 main problems
    88 mean square error values
    89 method
    90 model
    91 model of optimization
    92 multiplicity
    93 network
    94 neural network
    95 new optimizing algorithm
    96 operation
    97 optimization
    98 optimization algorithm
    99 optimization purposes
    100 optimizing algorithm
    101 optimum amount
    102 optimum model
    103 overbreak
    104 overbreak prediction
    105 parameters
    106 pattern design
    107 phenomenon
    108 point
    109 powerful optimization algorithm
    110 powerful tool
    111 prediction
    112 problem
    113 purpose
    114 research
    115 root mean square error (RMSE) values
    116 square error values
    117 such complicated problems
    118 technique
    119 testing
    120 three-layer artificial neural network
    121 tool
    122 training
    123 tunnel
    124 tunneling
    125 tunneling operations
    126 undesirable phenomenon
    127 values
    128 variation
    129 weight
    130 schema:name Overbreak prediction and optimization in tunnel using neural network and bee colony techniques
    131 schema:pagination 1191-1202
    132 schema:productId N5cf16a261a2541d0ab5c33a0c1aeca08
    133 Nf735996166db4ddcbf36e5da8d91a12a
    134 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107828519
    135 https://doi.org/10.1007/s00366-018-0658-7
    136 schema:sdDatePublished 2022-05-20T07:34
    137 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    138 schema:sdPublisher N301c73a766b3478abdf2fe8b12f23011
    139 schema:url https://doi.org/10.1007/s00366-018-0658-7
    140 sgo:license sg:explorer/license/
    141 sgo:sdDataset articles
    142 rdf:type schema:ScholarlyArticle
    143 N0fafcf31e0cd45788658768a388d9c90 rdf:first sg:person.014252140553.62
    144 rdf:rest N4ca2ddd8a45e492dafddfa8cce9e3353
    145 N24564ef0376e4da58f668e80397e938b schema:volumeNumber 35
    146 rdf:type schema:PublicationVolume
    147 N301c73a766b3478abdf2fe8b12f23011 schema:name Springer Nature - SN SciGraph project
    148 rdf:type schema:Organization
    149 N4ca2ddd8a45e492dafddfa8cce9e3353 rdf:first sg:person.013454560153.70
    150 rdf:rest N6daed414fa6148668f40ec94ecab2bf3
    151 N5cf16a261a2541d0ab5c33a0c1aeca08 schema:name dimensions_id
    152 schema:value pub.1107828519
    153 rdf:type schema:PropertyValue
    154 N6daed414fa6148668f40ec94ecab2bf3 rdf:first sg:person.07670010105.63
    155 rdf:rest Ncccd31f72c6d42bea1ede30b2238b5a9
    156 N94fb6babd6b64c56934f2c4697167850 rdf:first sg:person.012061617153.66
    157 rdf:rest N0fafcf31e0cd45788658768a388d9c90
    158 Na63ad7737d3143a8b34360284a2fa3d7 rdf:first sg:person.010264523752.19
    159 rdf:rest rdf:nil
    160 Ncccd31f72c6d42bea1ede30b2238b5a9 rdf:first sg:person.07556657237.27
    161 rdf:rest Na63ad7737d3143a8b34360284a2fa3d7
    162 Nf735996166db4ddcbf36e5da8d91a12a schema:name doi
    163 schema:value 10.1007/s00366-018-0658-7
    164 rdf:type schema:PropertyValue
    165 Nfc8976fc0b9c4c8c971df86f878be55e schema:issueNumber 4
    166 rdf:type schema:PublicationIssue
    167 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    168 schema:name Information and Computing Sciences
    169 rdf:type schema:DefinedTerm
    170 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    171 schema:name Artificial Intelligence and Image Processing
    172 rdf:type schema:DefinedTerm
    173 sg:journal.1041785 schema:issn 0177-0667
    174 1435-5663
    175 schema:name Engineering with Computers
    176 schema:publisher Springer Nature
    177 rdf:type schema:Periodical
    178 sg:person.010264523752.19 schema:affiliation grid-institutes:grid.410877.d
    179 schema:familyName Mohamad
    180 schema:givenName Edy Tonnizam
    181 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010264523752.19
    182 rdf:type schema:Person
    183 sg:person.012061617153.66 schema:affiliation grid-institutes:grid.411368.9
    184 schema:familyName Koopialipoor
    185 schema:givenName Mohammadreza
    186 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012061617153.66
    187 rdf:type schema:Person
    188 sg:person.013454560153.70 schema:affiliation grid-institutes:grid.411368.9
    189 schema:familyName Haghighi
    190 schema:givenName Mojtaba
    191 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013454560153.70
    192 rdf:type schema:Person
    193 sg:person.014252140553.62 schema:affiliation grid-institutes:grid.411368.9
    194 schema:familyName Ghaleini
    195 schema:givenName Ebrahim Noroozi
    196 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014252140553.62
    197 rdf:type schema:Person
    198 sg:person.07556657237.27 schema:affiliation grid-institutes:grid.411368.9
    199 schema:familyName Maarefvand
    200 schema:givenName Parviz
    201 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07556657237.27
    202 rdf:type schema:Person
    203 sg:person.07670010105.63 schema:affiliation grid-institutes:None
    204 schema:familyName Kanagarajan
    205 schema:givenName Sujith
    206 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07670010105.63
    207 rdf:type schema:Person
    208 sg:pub.10.1007/978-1-4899-3099-6_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1089745563
    209 https://doi.org/10.1007/978-1-4899-3099-6_2
    210 rdf:type schema:CreativeWork
    211 sg:pub.10.1007/978-3-642-32964-7_15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001473417
    212 https://doi.org/10.1007/978-3-642-32964-7_15
    213 rdf:type schema:CreativeWork
    214 sg:pub.10.1007/bf00421947 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018271521
    215 https://doi.org/10.1007/bf00421947
    216 rdf:type schema:CreativeWork
    217 sg:pub.10.1007/bf02478259 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028715170
    218 https://doi.org/10.1007/bf02478259
    219 rdf:type schema:CreativeWork
    220 sg:pub.10.1007/s00366-012-0298-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042514146
    221 https://doi.org/10.1007/s00366-012-0298-2
    222 rdf:type schema:CreativeWork
    223 sg:pub.10.1007/s00366-015-0400-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003281017
    224 https://doi.org/10.1007/s00366-015-0400-7
    225 rdf:type schema:CreativeWork
    226 sg:pub.10.1007/s00366-015-0402-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022416262
    227 https://doi.org/10.1007/s00366-015-0402-5
    228 rdf:type schema:CreativeWork
    229 sg:pub.10.1007/s00366-015-0408-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1031058347
    230 https://doi.org/10.1007/s00366-015-0408-z
    231 rdf:type schema:CreativeWork
    232 sg:pub.10.1007/s00366-015-0415-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006981814
    233 https://doi.org/10.1007/s00366-015-0415-0
    234 rdf:type schema:CreativeWork
    235 sg:pub.10.1007/s00366-015-0425-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1007184144
    236 https://doi.org/10.1007/s00366-015-0425-y
    237 rdf:type schema:CreativeWork
    238 sg:pub.10.1007/s00366-016-0442-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042559958
    239 https://doi.org/10.1007/s00366-016-0442-5
    240 rdf:type schema:CreativeWork
    241 sg:pub.10.1007/s00366-016-0447-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030807144
    242 https://doi.org/10.1007/s00366-016-0447-0
    243 rdf:type schema:CreativeWork
    244 sg:pub.10.1007/s00366-016-0453-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013450683
    245 https://doi.org/10.1007/s00366-016-0453-2
    246 rdf:type schema:CreativeWork
    247 sg:pub.10.1007/s00366-016-0475-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027652714
    248 https://doi.org/10.1007/s00366-016-0475-9
    249 rdf:type schema:CreativeWork
    250 sg:pub.10.1007/s00366-016-0497-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053003292
    251 https://doi.org/10.1007/s00366-016-0497-3
    252 rdf:type schema:CreativeWork
    253 sg:pub.10.1007/s00366-018-0582-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1100424456
    254 https://doi.org/10.1007/s00366-018-0582-x
    255 rdf:type schema:CreativeWork
    256 sg:pub.10.1007/s00366-018-0596-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101330868
    257 https://doi.org/10.1007/s00366-018-0596-4
    258 rdf:type schema:CreativeWork
    259 sg:pub.10.1007/s00366-018-0625-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105067651
    260 https://doi.org/10.1007/s00366-018-0625-3
    261 rdf:type schema:CreativeWork
    262 sg:pub.10.1007/s00366-018-0642-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107086360
    263 https://doi.org/10.1007/s00366-018-0642-2
    264 rdf:type schema:CreativeWork
    265 sg:pub.10.1007/s00500-018-3253-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104266062
    266 https://doi.org/10.1007/s00500-018-3253-3
    267 rdf:type schema:CreativeWork
    268 sg:pub.10.1007/s00521-012-0856-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1006773113
    269 https://doi.org/10.1007/s00521-012-0856-y
    270 rdf:type schema:CreativeWork
    271 sg:pub.10.1007/s00521-012-1038-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016800802
    272 https://doi.org/10.1007/s00521-012-1038-7
    273 rdf:type schema:CreativeWork
    274 sg:pub.10.1007/s00521-016-2434-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009507452
    275 https://doi.org/10.1007/s00521-016-2434-1
    276 rdf:type schema:CreativeWork
    277 sg:pub.10.1007/s00521-016-2598-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042598741
    278 https://doi.org/10.1007/s00521-016-2598-8
    279 rdf:type schema:CreativeWork
    280 sg:pub.10.1007/s00603-016-1015-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1033227644
    281 https://doi.org/10.1007/s00603-016-1015-z
    282 rdf:type schema:CreativeWork
    283 sg:pub.10.1007/s10064-004-0228-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028059003
    284 https://doi.org/10.1007/s10064-004-0228-7
    285 rdf:type schema:CreativeWork
    286 sg:pub.10.1007/s10064-014-0588-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002537991
    287 https://doi.org/10.1007/s10064-014-0588-6
    288 rdf:type schema:CreativeWork
    289 sg:pub.10.1007/s10064-015-0720-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042960605
    290 https://doi.org/10.1007/s10064-015-0720-2
    291 rdf:type schema:CreativeWork
    292 sg:pub.10.1007/s10064-017-1116-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090314294
    293 https://doi.org/10.1007/s10064-017-1116-2
    294 rdf:type schema:CreativeWork
    295 sg:pub.10.1007/s10064-018-1349-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105883247
    296 https://doi.org/10.1007/s10064-018-1349-8
    297 rdf:type schema:CreativeWork
    298 sg:pub.10.1007/s10706-015-9970-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034231673
    299 https://doi.org/10.1007/s10706-015-9970-9
    300 rdf:type schema:CreativeWork
    301 sg:pub.10.1007/s10706-018-0459-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100424638
    302 https://doi.org/10.1007/s10706-018-0459-1
    303 rdf:type schema:CreativeWork
    304 sg:pub.10.1007/s10898-007-9149-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1049543869
    305 https://doi.org/10.1007/s10898-007-9149-x
    306 rdf:type schema:CreativeWork
    307 sg:pub.10.1007/s11269-016-1304-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1000974137
    308 https://doi.org/10.1007/s11269-016-1304-z
    309 rdf:type schema:CreativeWork
    310 sg:pub.10.1007/s12517-015-1908-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025927733
    311 https://doi.org/10.1007/s12517-015-1908-2
    312 rdf:type schema:CreativeWork
    313 sg:pub.10.1007/s12517-015-1952-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1029920407
    314 https://doi.org/10.1007/s12517-015-1952-y
    315 rdf:type schema:CreativeWork
    316 sg:pub.10.1007/s12665-012-2214-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1020162888
    317 https://doi.org/10.1007/s12665-012-2214-x
    318 rdf:type schema:CreativeWork
    319 sg:pub.10.1007/s12665-015-4274-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030000705
    320 https://doi.org/10.1007/s12665-015-4274-1
    321 rdf:type schema:CreativeWork
    322 sg:pub.10.1007/s12665-016-6335-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009284080
    323 https://doi.org/10.1007/s12665-016-6335-5
    324 rdf:type schema:CreativeWork
    325 sg:pub.10.1007/s13762-017-1395-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1090744847
    326 https://doi.org/10.1007/s13762-017-1395-y
    327 rdf:type schema:CreativeWork
    328 grid-institutes:None schema:alternateName Department of Computer Science, Annai Vailankanni Arts and Science College, (Affiliated to Bharathidhasan University), 613007, Thanjavur, Tamilnadu, India
    329 schema:name Department of Computer Science, Annai Vailankanni Arts and Science College, (Affiliated to Bharathidhasan University), 613007, Thanjavur, Tamilnadu, India
    330 rdf:type schema:Organization
    331 grid-institutes:grid.410877.d schema:alternateName Centre of Tropical Geoengineering (GEOTROPIK), Faculty of Civil Engineering, Universiti Teknologi Malaysia, 81310, Johor, Malaysia
    332 schema:name Centre of Tropical Geoengineering (GEOTROPIK), Faculty of Civil Engineering, Universiti Teknologi Malaysia, 81310, Johor, Malaysia
    333 rdf:type schema:Organization
    334 grid-institutes:grid.411368.9 schema:alternateName Faculty of Civil and Environmental Engineering, Amirkabir University of Technology, 15914, Tehran, Iran
    335 Faculty of Mining and Metallurgy, Amirkabir University of Technology, Tehran, Iran
    336 schema:name Faculty of Civil and Environmental Engineering, Amirkabir University of Technology, 15914, Tehran, Iran
    337 Faculty of Mining and Metallurgy, Amirkabir University of Technology, Tehran, Iran
    338 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...