A combination of artificial bee colony and neural network for approximating the safety factor of retaining walls View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-06-22

AUTHORS

Ebrahim Noroozi Ghaleini, Mohammadreza Koopialipoor, Mohammadreza Momenzadeh, Mehdi Esfandi Sarafraz, Edy Tonnizam Mohamad, Behrouz Gordan

ABSTRACT

This paper presents intelligent models for solving problems related to retaining walls in geotechnics. To do this, safety factors of 2800 retaining walls were modeled and recorded considering different effective parameters of retaining walls (RWs), i.e., height of the wall, wall thickness, friction angle, density of the soil, and density of the rock. Two intelligent methodologies including a pre-developed artificial neural network (ANN) and a combination of artificial bee colony (ABC) and ANN were selectively developed to approximate safety factors of RWs. In the new network, ABC was used to optimize weight and biases of ANN to receive higher level of accuracy and performance prediction. Many ANN and ABC–ANN models were built considering the most influential parameters of them and their performances were evaluated using coefficient of determination (R2) and root mean square error (RMSE) performance indices. After developing the mentioned models, it was found that the new hybrid model is able to increase network performance capacity significantly. For instance, R2 values of 0.982 and 0.985 for training and testing of ABC–ANN model, respectively, compared to these values of 0.920 and 0.924 for ANN model showed that the new hybrid model can be introduced as a capable enough technique in the field of this study for estimating safety factors of RWs. More... »

PAGES

647-658

References to SciGraph publications

  • 2016-06-17. Application of PSO to develop a powerful equation for prediction of flyrock due to blasting in NEURAL COMPUTING AND APPLICATIONS
  • 2015-12-18. Prediction of Drillability of Rocks with Strength Properties Using a Hybrid GA-ANN Technique in GEOTECHNICAL AND GEOLOGICAL ENGINEERING
  • 2017-04-19. On the stability of geotechnical systems and its fractal progressive loss in ACTA GEOTECHNICA
  • 2016-03-29. The Application of Artificial Bee Colony and Gravitational Search Algorithm in Reservoir Optimization in WATER RESOURCES MANAGEMENT
  • 2017-07-01. A neuro-genetic predictive model to approximate overbreak induced by drilling and blasting operation in tunnels in BULLETIN OF ENGINEERING GEOLOGY AND THE ENVIRONMENT
  • 2017-03-06. RETRACTED ARTICLE: Analysis of influential factors for predicting the shear strength of a V-shaped angle shear connector in composite beams using an adaptive neuro-fuzzy technique in JOURNAL OF INTELLIGENT MANUFACTURING
  • 1965-07. Experimental investigation of the pressure of a loose medium on retaining walls with a vertical back face and horizontal backfill surface in SOIL MECHANICS AND FOUNDATION ENGINEERING
  • 2018-01-16. A Risk-Based Technique to Analyze Flyrock Results Through Rock Engineering System in GEOTECHNICAL AND GEOLOGICAL ENGINEERING
  • 2016-05-26. An optimized ANN model based on genetic algorithm for predicting ripping production in NEURAL COMPUTING AND APPLICATIONS
  • 2016-04-09. RETRACTED ARTICLE: Potential of soft computing approach for evaluating the factors affecting the capacity of steel–concrete composite beam in JOURNAL OF INTELLIGENT MANUFACTURING
  • 1943-12. A logical calculus of the ideas immanent in nervous activity in BULLETIN OF MATHEMATICAL BIOLOGY
  • 2015-08-19. Application of several non-linear prediction tools for estimating uniaxial compressive strength of granitic rocks and comparison of their performances in ENGINEERING WITH COMPUTERS
  • 2015-09-12. Combination of neural network and ant colony optimization algorithms for prediction and optimization of flyrock and back-break induced by blasting in ENGINEERING WITH COMPUTERS
  • 2007-04-13. A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm in JOURNAL OF GLOBAL OPTIMIZATION
  • 2016-07-13. Optimization of retaining wall design using evolutionary algorithms in STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION
  • 1993. Statistical aspects of neural networks in NETWORKS AND CHAOS — STATISTICAL AND PROBABILISTIC ASPECTS
  • 2018-03-03. Three hybrid intelligent models in estimating flyrock distance resulting from blasting in ENGINEERING WITH COMPUTERS
  • 2016-03-28. Feasibility of PSO-ANN model for predicting surface settlement caused by tunneling in ENGINEERING WITH COMPUTERS
  • 2015-01-30. Prediction and optimization of back-break and rock fragmentation using an artificial neural network and a bee colony algorithm in BULLETIN OF ENGINEERING GEOLOGY AND THE ENVIRONMENT
  • 2018-05-28. Applying various hybrid intelligent systems to evaluate and predict slope stability under static and dynamic conditions in SOFT COMPUTING
  • 2015-06-18. A combination of the ICA-ANN model to predict air-overpressure resulting from blasting in ENGINEERING WITH COMPUTERS
  • 2012. An Artificial Bee Colony Algorithm for the Unrelated Parallel Machines Scheduling Problem in PARALLEL PROBLEM SOLVING FROM NATURE - PPSN XII
  • 2012-02-29. Particle swarm optimization trained neural network for aquifer parameter estimation in KSCE JOURNAL OF CIVIL ENGINEERING
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00366-018-0625-3

    DOI

    http://dx.doi.org/10.1007/s00366-018-0625-3

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1105067651


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Faculty of Mining and Metallurgy, Amirkabir University of Technology, Tehran, Iran", 
              "id": "http://www.grid.ac/institutes/grid.411368.9", 
              "name": [
                "Faculty of Mining and Metallurgy, Amirkabir University of Technology, Tehran, Iran"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ghaleini", 
            "givenName": "Ebrahim Noroozi", 
            "id": "sg:person.014252140553.62", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014252140553.62"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Faculty of Civil and Environmental Engineering, Amirkabir University of Technology, 15914, Tehran, Iran", 
              "id": "http://www.grid.ac/institutes/grid.411368.9", 
              "name": [
                "Faculty of Civil and Environmental Engineering, Amirkabir University of Technology, 15914, Tehran, Iran"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Koopialipoor", 
            "givenName": "Mohammadreza", 
            "id": "sg:person.012061617153.66", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012061617153.66"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Faculty of Civil and Environmental Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran", 
              "id": "http://www.grid.ac/institutes/grid.472472.0", 
              "name": [
                "Faculty of Civil and Environmental Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Momenzadeh", 
            "givenName": "Mohammadreza", 
            "id": "sg:person.013353171122.23", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013353171122.23"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Civil Engineering, West Tehran Branch, Islamic Azad University, Tehran, Iran", 
              "id": "http://www.grid.ac/institutes/grid.411463.5", 
              "name": [
                "Department of Civil Engineering, West Tehran Branch, Islamic Azad University, Tehran, Iran"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sarafraz", 
            "givenName": "Mehdi Esfandi", 
            "id": "sg:person.016066151673.63", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016066151673.63"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Geotropik- Centre of Tropical Geoengineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia", 
              "id": "http://www.grid.ac/institutes/grid.410877.d", 
              "name": [
                "Geotropik- Centre of Tropical Geoengineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mohamad", 
            "givenName": "Edy Tonnizam", 
            "id": "sg:person.010264523752.19", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010264523752.19"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Geotechnics and Transportation, Faculty of Civil Engineering, Universiti Teknologi Malaysia (UTM), 81310, Skudai, Johor, Malaysia", 
              "id": "http://www.grid.ac/institutes/grid.410877.d", 
              "name": [
                "Department of Geotechnics and Transportation, Faculty of Civil Engineering, Universiti Teknologi Malaysia (UTM), 81310, Skudai, Johor, Malaysia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gordan", 
            "givenName": "Behrouz", 
            "id": "sg:person.014561312544.73", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014561312544.73"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s10064-017-1116-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090314294", 
              "https://doi.org/10.1007/s10064-017-1116-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10706-015-9970-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034231673", 
              "https://doi.org/10.1007/s10706-015-9970-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00366-015-0410-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041240827", 
              "https://doi.org/10.1007/s00366-015-0410-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00366-016-0447-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030807144", 
              "https://doi.org/10.1007/s00366-016-0447-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4899-3099-6_2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1089745563", 
              "https://doi.org/10.1007/978-1-4899-3099-6_2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00366-015-0415-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006981814", 
              "https://doi.org/10.1007/s00366-015-0415-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11440-017-0549-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084931959", 
              "https://doi.org/10.1007/s11440-017-0549-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10898-007-9149-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049543869", 
              "https://doi.org/10.1007/s10898-007-9149-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00366-015-0408-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031058347", 
              "https://doi.org/10.1007/s00366-015-0408-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01706095", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006135428", 
              "https://doi.org/10.1007/bf01706095"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-32964-7_15", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001473417", 
              "https://doi.org/10.1007/978-3-642-32964-7_15"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02478259", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028715170", 
              "https://doi.org/10.1007/bf02478259"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12205-012-1452-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029587808", 
              "https://doi.org/10.1007/s12205-012-1452-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00521-016-2434-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009507452", 
              "https://doi.org/10.1007/s00521-016-2434-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00158-016-1521-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013097261", 
              "https://doi.org/10.1007/s00158-016-1521-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11269-016-1304-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000974137", 
              "https://doi.org/10.1007/s11269-016-1304-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00366-018-0596-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101330868", 
              "https://doi.org/10.1007/s00366-018-0596-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10845-016-1217-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037227256", 
              "https://doi.org/10.1007/s10845-016-1217-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00521-016-2359-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007611346", 
              "https://doi.org/10.1007/s00521-016-2359-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10064-015-0720-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042960605", 
              "https://doi.org/10.1007/s10064-015-0720-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10706-018-0459-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100424638", 
              "https://doi.org/10.1007/s10706-018-0459-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00500-018-3253-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1104266062", 
              "https://doi.org/10.1007/s00500-018-3253-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10845-017-1306-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084027183", 
              "https://doi.org/10.1007/s10845-017-1306-6"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-06-22", 
        "datePublishedReg": "2018-06-22", 
        "description": "This paper presents intelligent models for solving problems related to retaining walls in geotechnics. To do this, safety factors of 2800 retaining walls were modeled and recorded considering different effective parameters of retaining walls (RWs), i.e., height of the wall, wall thickness, friction angle, density of the soil, and density of the rock. Two intelligent methodologies including a pre-developed artificial neural network (ANN) and a combination of artificial bee colony (ABC) and ANN were selectively developed to approximate safety factors of RWs. In the new network, ABC was used to optimize weight and biases of ANN to receive higher level of accuracy and performance prediction. Many ANN and ABC\u2013ANN models were built considering the most influential parameters of them and their performances were evaluated using coefficient of determination (R2) and root mean square error (RMSE) performance indices. After developing the mentioned models, it was found that the new hybrid model is able to increase network performance capacity significantly. For instance, R2 values of 0.982 and 0.985 for training and testing of ABC\u2013ANN model, respectively, compared to these values of 0.920 and 0.924 for ANN model showed that the new hybrid model can be introduced as a capable enough technique in the field of this study for estimating safety factors of RWs.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s00366-018-0625-3", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1041785", 
            "issn": [
              "0177-0667", 
              "1435-5663"
            ], 
            "name": "Engineering with Computers", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "35"
          }
        ], 
        "keywords": [
          "safety factor", 
          "ABC\u2013ANN models", 
          "artificial neural network", 
          "artificial bee colony", 
          "error performance index", 
          "new hybrid model", 
          "different effective parameters", 
          "friction angle", 
          "performance prediction", 
          "influential parameters", 
          "effective parameters", 
          "hybrid model", 
          "neural network", 
          "performance index", 
          "ANN model", 
          "intelligent methodology", 
          "intelligent model", 
          "bee colonies", 
          "wall thickness", 
          "coefficient of determination", 
          "wall", 
          "geotechnics", 
          "density", 
          "R2 values", 
          "parameters", 
          "new network", 
          "thickness", 
          "network", 
          "model", 
          "performance", 
          "angle", 
          "coefficient", 
          "height", 
          "accuracy", 
          "prediction", 
          "field", 
          "values", 
          "technique", 
          "methodology", 
          "combination", 
          "capacity", 
          "rocks", 
          "testing", 
          "soil", 
          "problem", 
          "instances", 
          "determination", 
          "performance capacity", 
          "RW", 
          "factors", 
          "training", 
          "study", 
          "weight", 
          "biases", 
          "index", 
          "high levels", 
          "levels", 
          "colonies", 
          "paper"
        ], 
        "name": "A combination of artificial bee colony and neural network for approximating the safety factor of retaining walls", 
        "pagination": "647-658", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1105067651"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00366-018-0625-3"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00366-018-0625-3", 
          "https://app.dimensions.ai/details/publication/pub.1105067651"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-05-20T07:34", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_760.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s00366-018-0625-3"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00366-018-0625-3'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00366-018-0625-3'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00366-018-0625-3'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00366-018-0625-3'


     

    This table displays all metadata directly associated to this object as RDF triples.

    257 TRIPLES      22 PREDICATES      107 URIs      76 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00366-018-0625-3 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author N1f9dafcaafd94168ae9cfedb68dde33b
    4 schema:citation sg:pub.10.1007/978-1-4899-3099-6_2
    5 sg:pub.10.1007/978-3-642-32964-7_15
    6 sg:pub.10.1007/bf01706095
    7 sg:pub.10.1007/bf02478259
    8 sg:pub.10.1007/s00158-016-1521-3
    9 sg:pub.10.1007/s00366-015-0408-z
    10 sg:pub.10.1007/s00366-015-0410-5
    11 sg:pub.10.1007/s00366-015-0415-0
    12 sg:pub.10.1007/s00366-016-0447-0
    13 sg:pub.10.1007/s00366-018-0596-4
    14 sg:pub.10.1007/s00500-018-3253-3
    15 sg:pub.10.1007/s00521-016-2359-8
    16 sg:pub.10.1007/s00521-016-2434-1
    17 sg:pub.10.1007/s10064-015-0720-2
    18 sg:pub.10.1007/s10064-017-1116-2
    19 sg:pub.10.1007/s10706-015-9970-9
    20 sg:pub.10.1007/s10706-018-0459-1
    21 sg:pub.10.1007/s10845-016-1217-y
    22 sg:pub.10.1007/s10845-017-1306-6
    23 sg:pub.10.1007/s10898-007-9149-x
    24 sg:pub.10.1007/s11269-016-1304-z
    25 sg:pub.10.1007/s11440-017-0549-x
    26 sg:pub.10.1007/s12205-012-1452-5
    27 schema:datePublished 2018-06-22
    28 schema:datePublishedReg 2018-06-22
    29 schema:description This paper presents intelligent models for solving problems related to retaining walls in geotechnics. To do this, safety factors of 2800 retaining walls were modeled and recorded considering different effective parameters of retaining walls (RWs), i.e., height of the wall, wall thickness, friction angle, density of the soil, and density of the rock. Two intelligent methodologies including a pre-developed artificial neural network (ANN) and a combination of artificial bee colony (ABC) and ANN were selectively developed to approximate safety factors of RWs. In the new network, ABC was used to optimize weight and biases of ANN to receive higher level of accuracy and performance prediction. Many ANN and ABC–ANN models were built considering the most influential parameters of them and their performances were evaluated using coefficient of determination (R2) and root mean square error (RMSE) performance indices. After developing the mentioned models, it was found that the new hybrid model is able to increase network performance capacity significantly. For instance, R2 values of 0.982 and 0.985 for training and testing of ABC–ANN model, respectively, compared to these values of 0.920 and 0.924 for ANN model showed that the new hybrid model can be introduced as a capable enough technique in the field of this study for estimating safety factors of RWs.
    30 schema:genre article
    31 schema:inLanguage en
    32 schema:isAccessibleForFree false
    33 schema:isPartOf N1190d6136a8846c1911fb716ee652354
    34 N1b5119b9367c40e5963ff45a504a1b65
    35 sg:journal.1041785
    36 schema:keywords ABC–ANN models
    37 ANN model
    38 R2 values
    39 RW
    40 accuracy
    41 angle
    42 artificial bee colony
    43 artificial neural network
    44 bee colonies
    45 biases
    46 capacity
    47 coefficient
    48 coefficient of determination
    49 colonies
    50 combination
    51 density
    52 determination
    53 different effective parameters
    54 effective parameters
    55 error performance index
    56 factors
    57 field
    58 friction angle
    59 geotechnics
    60 height
    61 high levels
    62 hybrid model
    63 index
    64 influential parameters
    65 instances
    66 intelligent methodology
    67 intelligent model
    68 levels
    69 methodology
    70 model
    71 network
    72 neural network
    73 new hybrid model
    74 new network
    75 paper
    76 parameters
    77 performance
    78 performance capacity
    79 performance index
    80 performance prediction
    81 prediction
    82 problem
    83 rocks
    84 safety factor
    85 soil
    86 study
    87 technique
    88 testing
    89 thickness
    90 training
    91 values
    92 wall
    93 wall thickness
    94 weight
    95 schema:name A combination of artificial bee colony and neural network for approximating the safety factor of retaining walls
    96 schema:pagination 647-658
    97 schema:productId N0bd1fed633cf409fba6dbd4f2c80a23e
    98 N15492ed283c8464497b60c61f78d8b8d
    99 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105067651
    100 https://doi.org/10.1007/s00366-018-0625-3
    101 schema:sdDatePublished 2022-05-20T07:34
    102 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    103 schema:sdPublisher Ncf24121e501b4699b4a15eeeca59133e
    104 schema:url https://doi.org/10.1007/s00366-018-0625-3
    105 sgo:license sg:explorer/license/
    106 sgo:sdDataset articles
    107 rdf:type schema:ScholarlyArticle
    108 N0bd1fed633cf409fba6dbd4f2c80a23e schema:name dimensions_id
    109 schema:value pub.1105067651
    110 rdf:type schema:PropertyValue
    111 N116195eb6cda4a179229319988af7f98 rdf:first sg:person.010264523752.19
    112 rdf:rest Ndb78e3a334e748748bd12a1ed10d1685
    113 N1190d6136a8846c1911fb716ee652354 schema:volumeNumber 35
    114 rdf:type schema:PublicationVolume
    115 N15492ed283c8464497b60c61f78d8b8d schema:name doi
    116 schema:value 10.1007/s00366-018-0625-3
    117 rdf:type schema:PropertyValue
    118 N1b5119b9367c40e5963ff45a504a1b65 schema:issueNumber 2
    119 rdf:type schema:PublicationIssue
    120 N1f9dafcaafd94168ae9cfedb68dde33b rdf:first sg:person.014252140553.62
    121 rdf:rest Nbbd19657d0544566b68cf9e2ac502717
    122 N85b5563d041b414eb5e9ec91bb74ff79 rdf:first sg:person.016066151673.63
    123 rdf:rest N116195eb6cda4a179229319988af7f98
    124 N92a01a7d195e492286b6b327b3e4caa7 rdf:first sg:person.013353171122.23
    125 rdf:rest N85b5563d041b414eb5e9ec91bb74ff79
    126 Nbbd19657d0544566b68cf9e2ac502717 rdf:first sg:person.012061617153.66
    127 rdf:rest N92a01a7d195e492286b6b327b3e4caa7
    128 Ncf24121e501b4699b4a15eeeca59133e schema:name Springer Nature - SN SciGraph project
    129 rdf:type schema:Organization
    130 Ndb78e3a334e748748bd12a1ed10d1685 rdf:first sg:person.014561312544.73
    131 rdf:rest rdf:nil
    132 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    133 schema:name Information and Computing Sciences
    134 rdf:type schema:DefinedTerm
    135 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    136 schema:name Artificial Intelligence and Image Processing
    137 rdf:type schema:DefinedTerm
    138 sg:journal.1041785 schema:issn 0177-0667
    139 1435-5663
    140 schema:name Engineering with Computers
    141 schema:publisher Springer Nature
    142 rdf:type schema:Periodical
    143 sg:person.010264523752.19 schema:affiliation grid-institutes:grid.410877.d
    144 schema:familyName Mohamad
    145 schema:givenName Edy Tonnizam
    146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010264523752.19
    147 rdf:type schema:Person
    148 sg:person.012061617153.66 schema:affiliation grid-institutes:grid.411368.9
    149 schema:familyName Koopialipoor
    150 schema:givenName Mohammadreza
    151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012061617153.66
    152 rdf:type schema:Person
    153 sg:person.013353171122.23 schema:affiliation grid-institutes:grid.472472.0
    154 schema:familyName Momenzadeh
    155 schema:givenName Mohammadreza
    156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013353171122.23
    157 rdf:type schema:Person
    158 sg:person.014252140553.62 schema:affiliation grid-institutes:grid.411368.9
    159 schema:familyName Ghaleini
    160 schema:givenName Ebrahim Noroozi
    161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014252140553.62
    162 rdf:type schema:Person
    163 sg:person.014561312544.73 schema:affiliation grid-institutes:grid.410877.d
    164 schema:familyName Gordan
    165 schema:givenName Behrouz
    166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014561312544.73
    167 rdf:type schema:Person
    168 sg:person.016066151673.63 schema:affiliation grid-institutes:grid.411463.5
    169 schema:familyName Sarafraz
    170 schema:givenName Mehdi Esfandi
    171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016066151673.63
    172 rdf:type schema:Person
    173 sg:pub.10.1007/978-1-4899-3099-6_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1089745563
    174 https://doi.org/10.1007/978-1-4899-3099-6_2
    175 rdf:type schema:CreativeWork
    176 sg:pub.10.1007/978-3-642-32964-7_15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001473417
    177 https://doi.org/10.1007/978-3-642-32964-7_15
    178 rdf:type schema:CreativeWork
    179 sg:pub.10.1007/bf01706095 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006135428
    180 https://doi.org/10.1007/bf01706095
    181 rdf:type schema:CreativeWork
    182 sg:pub.10.1007/bf02478259 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028715170
    183 https://doi.org/10.1007/bf02478259
    184 rdf:type schema:CreativeWork
    185 sg:pub.10.1007/s00158-016-1521-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013097261
    186 https://doi.org/10.1007/s00158-016-1521-3
    187 rdf:type schema:CreativeWork
    188 sg:pub.10.1007/s00366-015-0408-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1031058347
    189 https://doi.org/10.1007/s00366-015-0408-z
    190 rdf:type schema:CreativeWork
    191 sg:pub.10.1007/s00366-015-0410-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041240827
    192 https://doi.org/10.1007/s00366-015-0410-5
    193 rdf:type schema:CreativeWork
    194 sg:pub.10.1007/s00366-015-0415-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006981814
    195 https://doi.org/10.1007/s00366-015-0415-0
    196 rdf:type schema:CreativeWork
    197 sg:pub.10.1007/s00366-016-0447-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030807144
    198 https://doi.org/10.1007/s00366-016-0447-0
    199 rdf:type schema:CreativeWork
    200 sg:pub.10.1007/s00366-018-0596-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101330868
    201 https://doi.org/10.1007/s00366-018-0596-4
    202 rdf:type schema:CreativeWork
    203 sg:pub.10.1007/s00500-018-3253-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104266062
    204 https://doi.org/10.1007/s00500-018-3253-3
    205 rdf:type schema:CreativeWork
    206 sg:pub.10.1007/s00521-016-2359-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007611346
    207 https://doi.org/10.1007/s00521-016-2359-8
    208 rdf:type schema:CreativeWork
    209 sg:pub.10.1007/s00521-016-2434-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009507452
    210 https://doi.org/10.1007/s00521-016-2434-1
    211 rdf:type schema:CreativeWork
    212 sg:pub.10.1007/s10064-015-0720-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042960605
    213 https://doi.org/10.1007/s10064-015-0720-2
    214 rdf:type schema:CreativeWork
    215 sg:pub.10.1007/s10064-017-1116-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090314294
    216 https://doi.org/10.1007/s10064-017-1116-2
    217 rdf:type schema:CreativeWork
    218 sg:pub.10.1007/s10706-015-9970-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034231673
    219 https://doi.org/10.1007/s10706-015-9970-9
    220 rdf:type schema:CreativeWork
    221 sg:pub.10.1007/s10706-018-0459-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100424638
    222 https://doi.org/10.1007/s10706-018-0459-1
    223 rdf:type schema:CreativeWork
    224 sg:pub.10.1007/s10845-016-1217-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1037227256
    225 https://doi.org/10.1007/s10845-016-1217-y
    226 rdf:type schema:CreativeWork
    227 sg:pub.10.1007/s10845-017-1306-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084027183
    228 https://doi.org/10.1007/s10845-017-1306-6
    229 rdf:type schema:CreativeWork
    230 sg:pub.10.1007/s10898-007-9149-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1049543869
    231 https://doi.org/10.1007/s10898-007-9149-x
    232 rdf:type schema:CreativeWork
    233 sg:pub.10.1007/s11269-016-1304-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1000974137
    234 https://doi.org/10.1007/s11269-016-1304-z
    235 rdf:type schema:CreativeWork
    236 sg:pub.10.1007/s11440-017-0549-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1084931959
    237 https://doi.org/10.1007/s11440-017-0549-x
    238 rdf:type schema:CreativeWork
    239 sg:pub.10.1007/s12205-012-1452-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029587808
    240 https://doi.org/10.1007/s12205-012-1452-5
    241 rdf:type schema:CreativeWork
    242 grid-institutes:grid.410877.d schema:alternateName Department of Geotechnics and Transportation, Faculty of Civil Engineering, Universiti Teknologi Malaysia (UTM), 81310, Skudai, Johor, Malaysia
    243 Geotropik- Centre of Tropical Geoengineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
    244 schema:name Department of Geotechnics and Transportation, Faculty of Civil Engineering, Universiti Teknologi Malaysia (UTM), 81310, Skudai, Johor, Malaysia
    245 Geotropik- Centre of Tropical Geoengineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
    246 rdf:type schema:Organization
    247 grid-institutes:grid.411368.9 schema:alternateName Faculty of Civil and Environmental Engineering, Amirkabir University of Technology, 15914, Tehran, Iran
    248 Faculty of Mining and Metallurgy, Amirkabir University of Technology, Tehran, Iran
    249 schema:name Faculty of Civil and Environmental Engineering, Amirkabir University of Technology, 15914, Tehran, Iran
    250 Faculty of Mining and Metallurgy, Amirkabir University of Technology, Tehran, Iran
    251 rdf:type schema:Organization
    252 grid-institutes:grid.411463.5 schema:alternateName Department of Civil Engineering, West Tehran Branch, Islamic Azad University, Tehran, Iran
    253 schema:name Department of Civil Engineering, West Tehran Branch, Islamic Azad University, Tehran, Iran
    254 rdf:type schema:Organization
    255 grid-institutes:grid.472472.0 schema:alternateName Faculty of Civil and Environmental Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
    256 schema:name Faculty of Civil and Environmental Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
    257 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...