Prediction of building damage induced by tunnelling through an optimized artificial neural network View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-05-18

AUTHORS

S. Moosazadeh, E. Namazi, H. Aghababaei, A. Marto, H. Mohamad, M. Hajihassani

ABSTRACT

Ground surface movement due to tunnelling in urban areas imposes strains to the adjacent buildings through distortion and rotation, and may consequently cause structural damage. The methods of building damage estimation are generally based on a two-stage procedure in which ground movement in the greenfield condition is estimated empirically, and then, a separate method based on structural mechanic principles is used to assess the damage. This paper predicts the building damage based on a model obtained from artificial neural network and a particle swarm optimization algorithm. To develop the model, the input and output parameters were collected from Line No. 2 of the Karaj Urban Railway Project in Iran. Accordingly, two case studies of damaged buildings were used to assess the ability of this model to predict the damage. Comparison with the measured data indicated that the model achieved the satisfactory results. More... »

PAGES

579-591

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00366-018-0615-5

DOI

http://dx.doi.org/10.1007/s00366-018-0615-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1104108878


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Faculty of Mining Engineering, Sahand University of Technology, Tabriz, Iran", 
          "id": "http://www.grid.ac/institutes/grid.412345.5", 
          "name": [
            "Faculty of Mining Engineering, Sahand University of Technology, Tabriz, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Moosazadeh", 
        "givenName": "S.", 
        "id": "sg:person.011734255156.71", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011734255156.71"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "COWI, London, UK", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "COWI, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Namazi", 
        "givenName": "E.", 
        "id": "sg:person.013705744732.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013705744732.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Faculty of Mining Engineering, Sahand University of Technology, Tabriz, Iran", 
          "id": "http://www.grid.ac/institutes/grid.412345.5", 
          "name": [
            "Faculty of Mining Engineering, Sahand University of Technology, Tabriz, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Aghababaei", 
        "givenName": "H.", 
        "id": "sg:person.016200610743.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016200610743.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Geotechnics and Transportation, Universiti Teknologi Malaysia, Johor, Malaysia", 
          "id": "http://www.grid.ac/institutes/grid.410877.d", 
          "name": [
            "Department of Geotechnics and Transportation, Universiti Teknologi Malaysia, Johor, Malaysia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Marto", 
        "givenName": "A.", 
        "id": "sg:person.01200512774.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01200512774.84"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Civil and Environmental Engineering Department, Universiti Teknologi Petronas, Perak, Malaysia", 
          "id": "http://www.grid.ac/institutes/grid.444487.f", 
          "name": [
            "Civil and Environmental Engineering Department, Universiti Teknologi Petronas, Perak, Malaysia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mohamad", 
        "givenName": "H.", 
        "id": "sg:person.07552226057.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07552226057.75"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mining Engineering, Urmia University, Urmia, Iran", 
          "id": "http://www.grid.ac/institutes/grid.412763.5", 
          "name": [
            "Department of Mining Engineering, Urmia University, Urmia, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hajihassani", 
        "givenName": "M.", 
        "id": "sg:person.01213305202.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01213305202.05"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00366-016-0497-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053003292", 
          "https://doi.org/10.1007/s00366-016-0497-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02478259", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028715170", 
          "https://doi.org/10.1007/bf02478259"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00521-016-2746-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030713151", 
          "https://doi.org/10.1007/s00521-016-2746-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00366-011-0210-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029681557", 
          "https://doi.org/10.1007/s00366-011-0210-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00366-016-0486-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020116409", 
          "https://doi.org/10.1007/s00366-016-0486-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00521-016-2434-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009507452", 
          "https://doi.org/10.1007/s00521-016-2434-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11721-007-0002-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033319589", 
          "https://doi.org/10.1007/s11721-007-0002-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00366-018-0578-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100288337", 
          "https://doi.org/10.1007/s00366-018-0578-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10706-004-7068-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029378913", 
          "https://doi.org/10.1007/s10706-004-7068-x"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-05-18", 
    "datePublishedReg": "2018-05-18", 
    "description": "Ground surface movement due to tunnelling in urban areas imposes strains to the adjacent buildings through distortion and rotation, and may consequently cause structural damage. The methods of building damage estimation are generally based on a two-stage procedure in which ground movement in the greenfield condition is estimated empirically, and then, a separate method based on structural mechanic principles is used to assess the damage. This paper predicts the building damage based on a model obtained from artificial neural network and a particle swarm optimization algorithm. To develop the model, the input and output parameters were collected from Line No. 2 of the Karaj Urban Railway Project in Iran. Accordingly, two case studies of damaged buildings were used to assess the ability of this model to predict the damage. Comparison with the measured data indicated that the model achieved the satisfactory results.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00366-018-0615-5", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1041785", 
        "issn": [
          "0177-0667", 
          "1435-5663"
        ], 
        "name": "Engineering with Computers", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "35"
      }
    ], 
    "keywords": [
      "ground surface movements", 
      "building damage", 
      "building damage estimation", 
      "artificial neural network", 
      "line No. 2", 
      "greenfield conditions", 
      "ground movements", 
      "mechanics principles", 
      "particle swarm optimization algorithm", 
      "adjacent buildings", 
      "damage estimation", 
      "output parameters", 
      "swarm optimization algorithm", 
      "surface movement", 
      "urban railway projects", 
      "structural damage", 
      "railway projects", 
      "neural network", 
      "optimization algorithm", 
      "buildings", 
      "No. 2", 
      "satisfactory results", 
      "urban areas", 
      "model", 
      "separate methods", 
      "method", 
      "case study", 
      "distortion", 
      "damage", 
      "estimation", 
      "parameters", 
      "network", 
      "prediction", 
      "two-stage procedure", 
      "conditions", 
      "input", 
      "algorithm", 
      "rotation", 
      "principles", 
      "results", 
      "comparison", 
      "movement", 
      "area", 
      "procedure", 
      "project", 
      "ability", 
      "data", 
      "study", 
      "Iran", 
      "paper"
    ], 
    "name": "Prediction of building damage induced by tunnelling through an optimized artificial neural network", 
    "pagination": "579-591", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1104108878"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00366-018-0615-5"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00366-018-0615-5", 
      "https://app.dimensions.ai/details/publication/pub.1104108878"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-10T10:18", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_779.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00366-018-0615-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00366-018-0615-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00366-018-0615-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00366-018-0615-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00366-018-0615-5'


 

This table displays all metadata directly associated to this object as RDF triples.

191 TRIPLES      22 PREDICATES      84 URIs      67 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00366-018-0615-5 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N3d9b6218eeb648738cd2ee061bf9fb88
4 schema:citation sg:pub.10.1007/bf02478259
5 sg:pub.10.1007/s00366-011-0210-5
6 sg:pub.10.1007/s00366-016-0486-6
7 sg:pub.10.1007/s00366-016-0497-3
8 sg:pub.10.1007/s00366-018-0578-6
9 sg:pub.10.1007/s00521-016-2434-1
10 sg:pub.10.1007/s00521-016-2746-1
11 sg:pub.10.1007/s10706-004-7068-x
12 sg:pub.10.1007/s11721-007-0002-0
13 schema:datePublished 2018-05-18
14 schema:datePublishedReg 2018-05-18
15 schema:description Ground surface movement due to tunnelling in urban areas imposes strains to the adjacent buildings through distortion and rotation, and may consequently cause structural damage. The methods of building damage estimation are generally based on a two-stage procedure in which ground movement in the greenfield condition is estimated empirically, and then, a separate method based on structural mechanic principles is used to assess the damage. This paper predicts the building damage based on a model obtained from artificial neural network and a particle swarm optimization algorithm. To develop the model, the input and output parameters were collected from Line No. 2 of the Karaj Urban Railway Project in Iran. Accordingly, two case studies of damaged buildings were used to assess the ability of this model to predict the damage. Comparison with the measured data indicated that the model achieved the satisfactory results.
16 schema:genre article
17 schema:inLanguage en
18 schema:isAccessibleForFree false
19 schema:isPartOf Nb123bffbbbbb4da98af8add4758a7162
20 Ncc573b5c0e9640a7aaefe3ed36621b3c
21 sg:journal.1041785
22 schema:keywords Iran
23 No. 2
24 ability
25 adjacent buildings
26 algorithm
27 area
28 artificial neural network
29 building damage
30 building damage estimation
31 buildings
32 case study
33 comparison
34 conditions
35 damage
36 damage estimation
37 data
38 distortion
39 estimation
40 greenfield conditions
41 ground movements
42 ground surface movements
43 input
44 line No. 2
45 mechanics principles
46 method
47 model
48 movement
49 network
50 neural network
51 optimization algorithm
52 output parameters
53 paper
54 parameters
55 particle swarm optimization algorithm
56 prediction
57 principles
58 procedure
59 project
60 railway projects
61 results
62 rotation
63 satisfactory results
64 separate methods
65 structural damage
66 study
67 surface movement
68 swarm optimization algorithm
69 two-stage procedure
70 urban areas
71 urban railway projects
72 schema:name Prediction of building damage induced by tunnelling through an optimized artificial neural network
73 schema:pagination 579-591
74 schema:productId N47455e0403bb4b5daef90ab09102e99c
75 Nae729feeb4d44ae7b1d3dd7eac2b9f8d
76 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104108878
77 https://doi.org/10.1007/s00366-018-0615-5
78 schema:sdDatePublished 2022-05-10T10:18
79 schema:sdLicense https://scigraph.springernature.com/explorer/license/
80 schema:sdPublisher N1d49a2a79f1b4cd282bf3b500be0897a
81 schema:url https://doi.org/10.1007/s00366-018-0615-5
82 sgo:license sg:explorer/license/
83 sgo:sdDataset articles
84 rdf:type schema:ScholarlyArticle
85 N04777ce257d94fcdb7f18892cba7da23 rdf:first sg:person.013705744732.01
86 rdf:rest N04e6783fced942da92fbf12840535093
87 N04e6783fced942da92fbf12840535093 rdf:first sg:person.016200610743.28
88 rdf:rest N914e990bf2cc433ebc558755c52bc567
89 N1d49a2a79f1b4cd282bf3b500be0897a schema:name Springer Nature - SN SciGraph project
90 rdf:type schema:Organization
91 N2be32935046841698404bd621d783d35 rdf:first sg:person.01213305202.05
92 rdf:rest rdf:nil
93 N3d9b6218eeb648738cd2ee061bf9fb88 rdf:first sg:person.011734255156.71
94 rdf:rest N04777ce257d94fcdb7f18892cba7da23
95 N47455e0403bb4b5daef90ab09102e99c schema:name dimensions_id
96 schema:value pub.1104108878
97 rdf:type schema:PropertyValue
98 N4e7f23cf5fe2465d8992671683bf34b4 rdf:first sg:person.07552226057.75
99 rdf:rest N2be32935046841698404bd621d783d35
100 N914e990bf2cc433ebc558755c52bc567 rdf:first sg:person.01200512774.84
101 rdf:rest N4e7f23cf5fe2465d8992671683bf34b4
102 Nae729feeb4d44ae7b1d3dd7eac2b9f8d schema:name doi
103 schema:value 10.1007/s00366-018-0615-5
104 rdf:type schema:PropertyValue
105 Nb123bffbbbbb4da98af8add4758a7162 schema:issueNumber 2
106 rdf:type schema:PublicationIssue
107 Ncc573b5c0e9640a7aaefe3ed36621b3c schema:volumeNumber 35
108 rdf:type schema:PublicationVolume
109 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
110 schema:name Information and Computing Sciences
111 rdf:type schema:DefinedTerm
112 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
113 schema:name Artificial Intelligence and Image Processing
114 rdf:type schema:DefinedTerm
115 sg:journal.1041785 schema:issn 0177-0667
116 1435-5663
117 schema:name Engineering with Computers
118 schema:publisher Springer Nature
119 rdf:type schema:Periodical
120 sg:person.011734255156.71 schema:affiliation grid-institutes:grid.412345.5
121 schema:familyName Moosazadeh
122 schema:givenName S.
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011734255156.71
124 rdf:type schema:Person
125 sg:person.01200512774.84 schema:affiliation grid-institutes:grid.410877.d
126 schema:familyName Marto
127 schema:givenName A.
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01200512774.84
129 rdf:type schema:Person
130 sg:person.01213305202.05 schema:affiliation grid-institutes:grid.412763.5
131 schema:familyName Hajihassani
132 schema:givenName M.
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01213305202.05
134 rdf:type schema:Person
135 sg:person.013705744732.01 schema:affiliation grid-institutes:None
136 schema:familyName Namazi
137 schema:givenName E.
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013705744732.01
139 rdf:type schema:Person
140 sg:person.016200610743.28 schema:affiliation grid-institutes:grid.412345.5
141 schema:familyName Aghababaei
142 schema:givenName H.
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016200610743.28
144 rdf:type schema:Person
145 sg:person.07552226057.75 schema:affiliation grid-institutes:grid.444487.f
146 schema:familyName Mohamad
147 schema:givenName H.
148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07552226057.75
149 rdf:type schema:Person
150 sg:pub.10.1007/bf02478259 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028715170
151 https://doi.org/10.1007/bf02478259
152 rdf:type schema:CreativeWork
153 sg:pub.10.1007/s00366-011-0210-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029681557
154 https://doi.org/10.1007/s00366-011-0210-5
155 rdf:type schema:CreativeWork
156 sg:pub.10.1007/s00366-016-0486-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020116409
157 https://doi.org/10.1007/s00366-016-0486-6
158 rdf:type schema:CreativeWork
159 sg:pub.10.1007/s00366-016-0497-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053003292
160 https://doi.org/10.1007/s00366-016-0497-3
161 rdf:type schema:CreativeWork
162 sg:pub.10.1007/s00366-018-0578-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100288337
163 https://doi.org/10.1007/s00366-018-0578-6
164 rdf:type schema:CreativeWork
165 sg:pub.10.1007/s00521-016-2434-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009507452
166 https://doi.org/10.1007/s00521-016-2434-1
167 rdf:type schema:CreativeWork
168 sg:pub.10.1007/s00521-016-2746-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030713151
169 https://doi.org/10.1007/s00521-016-2746-1
170 rdf:type schema:CreativeWork
171 sg:pub.10.1007/s10706-004-7068-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1029378913
172 https://doi.org/10.1007/s10706-004-7068-x
173 rdf:type schema:CreativeWork
174 sg:pub.10.1007/s11721-007-0002-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033319589
175 https://doi.org/10.1007/s11721-007-0002-0
176 rdf:type schema:CreativeWork
177 grid-institutes:None schema:alternateName COWI, London, UK
178 schema:name COWI, London, UK
179 rdf:type schema:Organization
180 grid-institutes:grid.410877.d schema:alternateName Department of Geotechnics and Transportation, Universiti Teknologi Malaysia, Johor, Malaysia
181 schema:name Department of Geotechnics and Transportation, Universiti Teknologi Malaysia, Johor, Malaysia
182 rdf:type schema:Organization
183 grid-institutes:grid.412345.5 schema:alternateName Faculty of Mining Engineering, Sahand University of Technology, Tabriz, Iran
184 schema:name Faculty of Mining Engineering, Sahand University of Technology, Tabriz, Iran
185 rdf:type schema:Organization
186 grid-institutes:grid.412763.5 schema:alternateName Department of Mining Engineering, Urmia University, Urmia, Iran
187 schema:name Department of Mining Engineering, Urmia University, Urmia, Iran
188 rdf:type schema:Organization
189 grid-institutes:grid.444487.f schema:alternateName Civil and Environmental Engineering Department, Universiti Teknologi Petronas, Perak, Malaysia
190 schema:name Civil and Environmental Engineering Department, Universiti Teknologi Petronas, Perak, Malaysia
191 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...