GPUs in subsurface simulation: an investigation View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-10

AUTHORS

Rajeev Das

ABSTRACT

Subsurface simulations are computationally intensive tasks and require a considerable amount of time to solve. To gain computational speed in simulating subsurface scenarios, this paper investigates the use of graphical processing units (GPUs). Accelerators such as GPUs have a different architecture compared to the conventional central processing units, which necessitates a distinct approach. Various techniques that are well suited to deal with GPUs and simulating subsurface phenomena are explored with an emphasis on groundwater flow problems. Finite volume method with implicit time steps to solve groundwater scenarios is discussed and the associated challenges are highlighted. Krylov solvers used in large-scale systems along with preconditioners to improve convergence are described in detail. An appropriate solver preconditioner pair that provides speedup is identified to solve groundwater flow scenarios. The role of matrix storage formats is examined in a GPU environment, and recommendations that could further improve performance are made. This paper concludes by presenting simulation results that test the ideas explored on different generations of NVIDIA GPUs and the speedup attained in them. More... »

PAGES

919-934

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00366-017-0506-1

DOI

http://dx.doi.org/10.1007/s00366-017-0506-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1084021132


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Canadian Nuclear Laboratories", 
          "id": "https://www.grid.ac/institutes/grid.459406.a", 
          "name": [
            "Canadian Nuclear Laboratories, 1 Plant Road, Chalk River, K0J 1J0, Renfrew, ON, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Das", 
        "givenName": "Rajeev", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s10596-014-9443-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007250508", 
          "https://doi.org/10.1007/s10596-014-9443-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1094342015580139", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007670194"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1094342015580139", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007670194"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcp.2003.08.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009661833"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcp.2003.08.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009661833"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.epsl.2005.09.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020031123"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1654059.1654078", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020511480"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2009wr008819", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021000045"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-30686-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021530755", 
          "https://doi.org/10.1007/3-540-30686-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1021530755", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/rg028i003p00277", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027030090"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0377-0427(00)00516-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037305210"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0309-1708(78)90029-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038499578"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0309-1708(78)90029-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038499578"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1094342012468181", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038525787"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1094342012468181", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038525787"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/wr012i003p00513", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042100328"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/2012wr013483", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044074330"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4020-3286-8_127", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045922589", 
          "https://doi.org/10.1007/978-1-4020-3286-8_127"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4020-3286-8_127", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045922589", 
          "https://doi.org/10.1007/978-1-4020-3286-8_127"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11227-012-0825-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046298581", 
          "https://doi.org/10.1007/s11227-012-0825-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1048539246", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-009-3379-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048539246", 
          "https://doi.org/10.1007/978-94-009-3379-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-009-3379-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048539246", 
          "https://doi.org/10.1007/978-94-009-3379-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jcph.2002.7176", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049983099"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/mcse.2006.105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061398040"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpds.2016.2549523", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061755068"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/050626272", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062846068"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/060662940", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062849479"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0719025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062852820"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/120903683", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062870279"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2692916.2555255", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063164491"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2136/sssaj1980.03615995004400050002x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069043312"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2136/vzj2005.0005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069053611"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/b978-0-12-811986-0.00033-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1087045212"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1201/9781420037470", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095903564"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/1.9780898718003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098555810"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/1.9781611971538", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098556266"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/acprof:oso/9780199655410.001.0001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098726949"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-10", 
    "datePublishedReg": "2017-10-01", 
    "description": "Subsurface simulations are computationally intensive tasks and require a considerable amount of time to solve. To gain computational speed in simulating subsurface scenarios, this paper investigates the use of graphical processing units (GPUs). Accelerators such as GPUs have a different architecture compared to the conventional central processing units, which necessitates a distinct approach. Various techniques that are well suited to deal with GPUs and simulating subsurface phenomena are explored with an emphasis on groundwater flow problems. Finite volume method with implicit time steps to solve groundwater scenarios is discussed and the associated challenges are highlighted. Krylov solvers used in large-scale systems along with preconditioners to improve convergence are described in detail. An appropriate solver preconditioner pair that provides speedup is identified to solve groundwater flow scenarios. The role of matrix storage formats is examined in a GPU environment, and recommendations that could further improve performance are made. This paper concludes by presenting simulation results that test the ideas explored on different generations of NVIDIA GPUs and the speedup attained in them.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00366-017-0506-1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1041785", 
        "issn": [
          "0177-0667", 
          "1435-5663"
        ], 
        "name": "Engineering with Computers", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "33"
      }
    ], 
    "name": "GPUs in subsurface simulation: an investigation", 
    "pagination": "919-934", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "8d0b4ddb6ed117b5885f41430e703fb4695471a342ecea13f0bb951c9cfab33c"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00366-017-0506-1"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1084021132"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00366-017-0506-1", 
      "https://app.dimensions.ai/details/publication/pub.1084021132"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:39", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000349_0000000349/records_113679_00000004.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00366-017-0506-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00366-017-0506-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00366-017-0506-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00366-017-0506-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00366-017-0506-1'


 

This table displays all metadata directly associated to this object as RDF triples.

162 TRIPLES      21 PREDICATES      60 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00366-017-0506-1 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nd9b0b99340c44059a91d32f663caeeb0
4 schema:citation sg:pub.10.1007/3-540-30686-2
5 sg:pub.10.1007/978-1-4020-3286-8_127
6 sg:pub.10.1007/978-94-009-3379-8
7 sg:pub.10.1007/s10596-014-9443-x
8 sg:pub.10.1007/s11227-012-0825-3
9 https://app.dimensions.ai/details/publication/pub.1021530755
10 https://app.dimensions.ai/details/publication/pub.1048539246
11 https://doi.org/10.1002/2012wr013483
12 https://doi.org/10.1006/jcph.2002.7176
13 https://doi.org/10.1016/0309-1708(78)90029-5
14 https://doi.org/10.1016/b978-0-12-811986-0.00033-9
15 https://doi.org/10.1016/j.epsl.2005.09.017
16 https://doi.org/10.1016/j.jcp.2003.08.010
17 https://doi.org/10.1016/s0377-0427(00)00516-1
18 https://doi.org/10.1029/2009wr008819
19 https://doi.org/10.1029/rg028i003p00277
20 https://doi.org/10.1029/wr012i003p00513
21 https://doi.org/10.1093/acprof:oso/9780199655410.001.0001
22 https://doi.org/10.1109/mcse.2006.105
23 https://doi.org/10.1109/tpds.2016.2549523
24 https://doi.org/10.1137/050626272
25 https://doi.org/10.1137/060662940
26 https://doi.org/10.1137/0719025
27 https://doi.org/10.1137/1.9780898718003
28 https://doi.org/10.1137/1.9781611971538
29 https://doi.org/10.1137/120903683
30 https://doi.org/10.1145/1654059.1654078
31 https://doi.org/10.1145/2692916.2555255
32 https://doi.org/10.1177/1094342012468181
33 https://doi.org/10.1177/1094342015580139
34 https://doi.org/10.1201/9781420037470
35 https://doi.org/10.2136/sssaj1980.03615995004400050002x
36 https://doi.org/10.2136/vzj2005.0005
37 schema:datePublished 2017-10
38 schema:datePublishedReg 2017-10-01
39 schema:description Subsurface simulations are computationally intensive tasks and require a considerable amount of time to solve. To gain computational speed in simulating subsurface scenarios, this paper investigates the use of graphical processing units (GPUs). Accelerators such as GPUs have a different architecture compared to the conventional central processing units, which necessitates a distinct approach. Various techniques that are well suited to deal with GPUs and simulating subsurface phenomena are explored with an emphasis on groundwater flow problems. Finite volume method with implicit time steps to solve groundwater scenarios is discussed and the associated challenges are highlighted. Krylov solvers used in large-scale systems along with preconditioners to improve convergence are described in detail. An appropriate solver preconditioner pair that provides speedup is identified to solve groundwater flow scenarios. The role of matrix storage formats is examined in a GPU environment, and recommendations that could further improve performance are made. This paper concludes by presenting simulation results that test the ideas explored on different generations of NVIDIA GPUs and the speedup attained in them.
40 schema:genre research_article
41 schema:inLanguage en
42 schema:isAccessibleForFree false
43 schema:isPartOf N5d02b81e368a4207b7b619b89ce624e1
44 Ncc3e5450d4c046f19dcce7ae2a1a8283
45 sg:journal.1041785
46 schema:name GPUs in subsurface simulation: an investigation
47 schema:pagination 919-934
48 schema:productId N147574e9c4c94928b6b363edd146d9d3
49 N7929d33126c44102a87480b7ef0b4a62
50 N8d9a8c08c5054ef38fdc435a13e85900
51 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084021132
52 https://doi.org/10.1007/s00366-017-0506-1
53 schema:sdDatePublished 2019-04-11T10:39
54 schema:sdLicense https://scigraph.springernature.com/explorer/license/
55 schema:sdPublisher N643f555be74143b4906b3a487b640f2a
56 schema:url https://link.springer.com/10.1007%2Fs00366-017-0506-1
57 sgo:license sg:explorer/license/
58 sgo:sdDataset articles
59 rdf:type schema:ScholarlyArticle
60 N147574e9c4c94928b6b363edd146d9d3 schema:name dimensions_id
61 schema:value pub.1084021132
62 rdf:type schema:PropertyValue
63 N52679036f2a041f8829b6a4667509d3c schema:affiliation https://www.grid.ac/institutes/grid.459406.a
64 schema:familyName Das
65 schema:givenName Rajeev
66 rdf:type schema:Person
67 N5d02b81e368a4207b7b619b89ce624e1 schema:issueNumber 4
68 rdf:type schema:PublicationIssue
69 N643f555be74143b4906b3a487b640f2a schema:name Springer Nature - SN SciGraph project
70 rdf:type schema:Organization
71 N7929d33126c44102a87480b7ef0b4a62 schema:name readcube_id
72 schema:value 8d0b4ddb6ed117b5885f41430e703fb4695471a342ecea13f0bb951c9cfab33c
73 rdf:type schema:PropertyValue
74 N8d9a8c08c5054ef38fdc435a13e85900 schema:name doi
75 schema:value 10.1007/s00366-017-0506-1
76 rdf:type schema:PropertyValue
77 Ncc3e5450d4c046f19dcce7ae2a1a8283 schema:volumeNumber 33
78 rdf:type schema:PublicationVolume
79 Nd9b0b99340c44059a91d32f663caeeb0 rdf:first N52679036f2a041f8829b6a4667509d3c
80 rdf:rest rdf:nil
81 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
82 schema:name Information and Computing Sciences
83 rdf:type schema:DefinedTerm
84 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
85 schema:name Artificial Intelligence and Image Processing
86 rdf:type schema:DefinedTerm
87 sg:journal.1041785 schema:issn 0177-0667
88 1435-5663
89 schema:name Engineering with Computers
90 rdf:type schema:Periodical
91 sg:pub.10.1007/3-540-30686-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021530755
92 https://doi.org/10.1007/3-540-30686-2
93 rdf:type schema:CreativeWork
94 sg:pub.10.1007/978-1-4020-3286-8_127 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045922589
95 https://doi.org/10.1007/978-1-4020-3286-8_127
96 rdf:type schema:CreativeWork
97 sg:pub.10.1007/978-94-009-3379-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048539246
98 https://doi.org/10.1007/978-94-009-3379-8
99 rdf:type schema:CreativeWork
100 sg:pub.10.1007/s10596-014-9443-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1007250508
101 https://doi.org/10.1007/s10596-014-9443-x
102 rdf:type schema:CreativeWork
103 sg:pub.10.1007/s11227-012-0825-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046298581
104 https://doi.org/10.1007/s11227-012-0825-3
105 rdf:type schema:CreativeWork
106 https://app.dimensions.ai/details/publication/pub.1021530755 schema:CreativeWork
107 https://app.dimensions.ai/details/publication/pub.1048539246 schema:CreativeWork
108 https://doi.org/10.1002/2012wr013483 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044074330
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1006/jcph.2002.7176 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049983099
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1016/0309-1708(78)90029-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038499578
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1016/b978-0-12-811986-0.00033-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1087045212
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1016/j.epsl.2005.09.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020031123
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1016/j.jcp.2003.08.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009661833
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1016/s0377-0427(00)00516-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037305210
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1029/2009wr008819 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021000045
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1029/rg028i003p00277 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027030090
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1029/wr012i003p00513 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042100328
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1093/acprof:oso/9780199655410.001.0001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098726949
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1109/mcse.2006.105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061398040
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1109/tpds.2016.2549523 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061755068
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1137/050626272 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062846068
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1137/060662940 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062849479
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1137/0719025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062852820
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1137/1.9780898718003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098555810
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1137/1.9781611971538 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098556266
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1137/120903683 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062870279
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1145/1654059.1654078 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020511480
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1145/2692916.2555255 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063164491
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1177/1094342012468181 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038525787
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1177/1094342015580139 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007670194
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1201/9781420037470 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095903564
155 rdf:type schema:CreativeWork
156 https://doi.org/10.2136/sssaj1980.03615995004400050002x schema:sameAs https://app.dimensions.ai/details/publication/pub.1069043312
157 rdf:type schema:CreativeWork
158 https://doi.org/10.2136/vzj2005.0005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069053611
159 rdf:type schema:CreativeWork
160 https://www.grid.ac/institutes/grid.459406.a schema:alternateName Canadian Nuclear Laboratories
161 schema:name Canadian Nuclear Laboratories, 1 Plant Road, Chalk River, K0J 1J0, Renfrew, ON, Canada
162 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...