Application of several non-linear prediction tools for estimating uniaxial compressive strength of granitic rocks and comparison of their performances View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2015-08-19

AUTHORS

Danial Jahed Armaghani, Edy Tonnizam Mohamad, Mohsen Hajihassani, Saffet Yagiz, Hossein Motaghedi

ABSTRACT

Uniaxial compressive strength (UCS) of rock is crucial for any type of projects constructed in/on rock mass. The test that is conducted to measure the UCS of rock is expensive, time consuming and having sample restriction. For this reason, the UCS of rock may be estimated using simple rock tests such as point load index (Is(50)), Schmidt hammer (Rn) and p-wave velocity (Vp) tests. To estimate the UCS of granitic rock as a function of relevant rock properties like Rn, p-wave and Is(50), the rock cores were collected from the face of the Pahang–Selangor fresh water tunnel in Malaysia. Afterwards, 124 samples are prepared and tested in accordance with relevant standards and the dataset is obtained. Further an established dataset is used for estimating the UCS of rock via three-nonlinear prediction tools, namely non-linear multiple regression (NLMR), artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS). After conducting the mentioned models, considering several performance indices including coefficient of determination (R2), variance account for and root mean squared error and also using simple ranking procedure, the models were examined and the best prediction model was selected. It is concluded that the R2 equal to 0.951 for testing dataset suggests the superiority of the ANFIS model, while these values are 0.651 and 0.886 for NLMR and ANN techniques, respectively. The results pointed out that the ANFIS model can be used for predicting UCS of rocks with higher capacity in comparison with others. However, the developed model may be useful at a preliminary stage of design; it should be used with caution and only for the specified rock types. More... »

PAGES

189-206

References to SciGraph publications

  • 1995. Back Propagation in ARTIFICIAL NEURAL NETWORKS
  • 2007-06-12. An Example of Artificial Neural Network (ANN) Application for Indirect Estimation of Rock Parameters in ROCK MECHANICS AND ROCK ENGINEERING
  • 1993. Statistical aspects of neural networks in NETWORKS AND CHAOS — STATISTICAL AND PROBABILISTIC ASPECTS
  • 2005-07-19. Fuzzy and Multiple Regression Modelling for Evaluation of Intact Rock Strength Based on Point Load, Schmidt Hammer and Sonic Velocity in ROCK MECHANICS AND ROCK ENGINEERING
  • 1993-12. Correlation between point load index and compressive strength for quartzite rocks in GEOTECHNICAL AND GEOLOGICAL ENGINEERING
  • 2007-10-05. A correlation between P-wave velocity, impact strength index, slake durability index and uniaxial compressive strength in BULLETIN OF ENGINEERING GEOLOGY AND THE ENVIRONMENT
  • 2009-02-07. The effect of rock classes on the relation between uniaxial compressive strength and point load index in BULLETIN OF ENGINEERING GEOLOGY AND THE ENVIRONMENT
  • 2012-07-03. Prediction of unconfined compressive strength of carbonate rocks using artificial neural networks in ENVIRONMENTAL EARTH SCIENCES
  • 2011-12-02. Estimation of uniaxial compressive strength based on P-wave and Schmidt hammer rebound using statistical method in ARABIAN JOURNAL OF GEOSCIENCES
  • 1990-10-01. Correlating schmidt hardness with compressive strength and young’s modulus of carbonate rocks in BULLETIN OF ENGINEERING GEOLOGY AND THE ENVIRONMENT
  • 2002-06. The artificial neural network as a tool for assessing geotechnical properties in GEOTECHNICAL AND GEOLOGICAL ENGINEERING
  • 2013-11-27. Blasting-induced flyrock and ground vibration prediction through an expert artificial neural network based on particle swarm optimization in ARABIAN JOURNAL OF GEOSCIENCES
  • 2012-04-17. A Neuro-Genetic Network for Predicting Uniaxial Compressive Strength of Rocks in GEOTECHNICAL AND GEOLOGICAL ENGINEERING
  • 2009-02-05. Prediction of slope stability using artificial neural network (case study: Noabad, Mazandaran, Iran) in ARABIAN JOURNAL OF GEOSCIENCES
  • 2008-02-14. Determination of mechanical properties of rocks using simple methods in BULLETIN OF ENGINEERING GEOLOGY AND THE ENVIRONMENT
  • 2011-07. P-wave velocity test for assessment of geotechnical properties of some rock materials in BULLETIN OF MATERIALS SCIENCE
  • 2010-01-19. A correlation between Schmidt hammer rebound numbers with impact strength index, slake durability index and P-wave velocity in INTERNATIONAL JOURNAL OF EARTH SCIENCES
  • 2005-11. The Relationships between Effective Porosity, Uniaxial Compressive Strength and Sonic Velocity of Intact Borrowdale Volcanic Group Core Samples from Sellafield in GEOTECHNICAL AND GEOLOGICAL ENGINEERING
  • 2014-07-10. Prediction of the unconfined compressive strength of soft rocks: a PSO-based ANN approach in BULLETIN OF ENGINEERING GEOLOGY AND THE ENVIRONMENT
  • 2010-07-02. Estimation of strength parameters of rock using artificial neural networks in BULLETIN OF ENGINEERING GEOLOGY AND THE ENVIRONMENT
  • 2006-03-30. Predicting Uniaxial Compressive Strength by Point Load Test: Significance of Cone Penetration in ROCK MECHANICS AND ROCK ENGINEERING
  • 2014-02-21. Application of artificial neural networks and multivariate statistics to predict UCS and E using physical properties of Asmari limestones in ARABIAN JOURNAL OF GEOSCIENCES
  • 2014-10-18. An adaptive neuro-fuzzy inference system for predicting unconfined compressive strength and Young’s modulus: a study on Main Range granite in BULLETIN OF ENGINEERING GEOLOGY AND THE ENVIRONMENT
  • 2011-03-02. Comparative analysis of intelligent algorithms to correlate strength and petrographic properties of some schistose rocks in ENGINEERING WITH COMPUTERS
  • 2012-10-17. An intelligent approach to predict unconfined compressive strength of rock surrounding access tunnels in longwall coal mining in NEURAL COMPUTING AND APPLICATIONS
  • 2012-02-12. A neuro-fuzzy approach for prediction of longitudinal wave velocity in NEURAL COMPUTING AND APPLICATIONS
  • 2008-11-01. Predicting uniaxial compressive strength, modulus of elasticity and index properties of rocks using the Schmidt hammer in BULLETIN OF ENGINEERING GEOLOGY AND THE ENVIRONMENT
  • 2011-11-11. Correlation Between Point Load Index and Uniaxial Compressive Strength for Different Rock Types in ROCK MECHANICS AND ROCK ENGINEERING
  • 2012-04-28. A comparative study of generalized regression neural network approach and adaptive neuro-fuzzy inference systems for prediction of unconfined compressive strength of rocks in NEURAL COMPUTING AND APPLICATIONS
  • 2012-07-29. Correlating P-wave Velocity with the Physico-Mechanical Properties of Different Rocks in PURE AND APPLIED GEOPHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00366-015-0410-5

    DOI

    http://dx.doi.org/10.1007/s00366-015-0410-5

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1041240827


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Applied Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0802", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Computation Theory and Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Geotechnics and Transportation, Faculty of Civil Engineering, Universiti Teknologi Malaysia (UTM), 81310, Skudai, Johor, Malaysia", 
              "id": "http://www.grid.ac/institutes/grid.410877.d", 
              "name": [
                "Department of Geotechnics and Transportation, Faculty of Civil Engineering, Universiti Teknologi Malaysia (UTM), 81310, Skudai, Johor, Malaysia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Jahed Armaghani", 
            "givenName": "Danial", 
            "id": "sg:person.012214152011.74", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012214152011.74"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Geotechnics and Transportation, Faculty of Civil Engineering, Universiti Teknologi Malaysia (UTM), 81310, Skudai, Johor, Malaysia", 
              "id": "http://www.grid.ac/institutes/grid.410877.d", 
              "name": [
                "Department of Geotechnics and Transportation, Faculty of Civil Engineering, Universiti Teknologi Malaysia (UTM), 81310, Skudai, Johor, Malaysia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tonnizam Mohamad", 
            "givenName": "Edy", 
            "id": "sg:person.010532067637.20", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010532067637.20"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Construction Research Alliance, Universiti Teknologi Malaysia (UTM), 81310, Skudai, Johor, Malaysia", 
              "id": "http://www.grid.ac/institutes/grid.410877.d", 
              "name": [
                "Construction Research Alliance, Universiti Teknologi Malaysia (UTM), 81310, Skudai, Johor, Malaysia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hajihassani", 
            "givenName": "Mohsen", 
            "id": "sg:person.01213305202.05", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01213305202.05"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Geological Engineering, Engineering Faculty, Pamukkale University, 20020, Denizli, Turkey", 
              "id": "http://www.grid.ac/institutes/grid.411742.5", 
              "name": [
                "Department of Geological Engineering, Engineering Faculty, Pamukkale University, 20020, Denizli, Turkey"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yagiz", 
            "givenName": "Saffet", 
            "id": "sg:person.011231325703.48", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011231325703.48"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Civil Engineering, Islamic Azad University, Qaemshahr Branch, Qaemshahr, Iran", 
              "id": "http://www.grid.ac/institutes/grid.411463.5", 
              "name": [
                "Department of Civil Engineering, Islamic Azad University, Qaemshahr Branch, Qaemshahr, Iran"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Motaghedi", 
            "givenName": "Hossein", 
            "id": "sg:person.016537667057.91", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016537667057.91"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s10064-009-0195-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002642520", 
              "https://doi.org/10.1007/s10064-009-0195-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10064-008-0172-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019387051", 
              "https://doi.org/10.1007/s10064-008-0172-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10064-014-0687-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038842643", 
              "https://doi.org/10.1007/s10064-014-0687-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00521-012-0944-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010393270", 
              "https://doi.org/10.1007/s00521-012-0944-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12034-011-0220-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024252087", 
              "https://doi.org/10.1007/s12034-011-0220-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00603-011-0192-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010372358", 
              "https://doi.org/10.1007/s00603-011-0192-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10064-008-0128-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051476425", 
              "https://doi.org/10.1007/s10064-008-0128-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12517-011-0460-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017130945", 
              "https://doi.org/10.1007/s12517-011-0460-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00521-012-1221-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023245237", 
              "https://doi.org/10.1007/s00521-012-1221-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12517-009-0035-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018402843", 
              "https://doi.org/10.1007/s12517-009-0035-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10064-007-0109-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013717643", 
              "https://doi.org/10.1007/s10064-007-0109-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12665-012-1783-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017168196", 
              "https://doi.org/10.1007/s12665-012-1783-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00603-005-0050-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028753726", 
              "https://doi.org/10.1007/s00603-005-0050-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00024-012-0556-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030955705", 
              "https://doi.org/10.1007/s00024-012-0556-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1015066903985", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001735557", 
              "https://doi.org/10.1023/a:1015066903985"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02592622", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044941281", 
              "https://doi.org/10.1007/bf02592622"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00521-012-0817-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024417308", 
              "https://doi.org/10.1007/s00521-012-0817-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00603-006-0082-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005198452", 
              "https://doi.org/10.1007/s00603-006-0082-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12517-013-1174-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038954491", 
              "https://doi.org/10.1007/s12517-013-1174-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10064-010-0301-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043431656", 
              "https://doi.org/10.1007/s10064-010-0301-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4899-3099-6_2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1089745563", 
              "https://doi.org/10.1007/978-1-4899-3099-6_2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00466369", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012661423", 
              "https://doi.org/10.1007/bf00466369"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12517-014-1331-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015338444", 
              "https://doi.org/10.1007/s12517-014-1331-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00366-011-0210-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029681557", 
              "https://doi.org/10.1007/s00366-011-0210-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bfb0027022", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003977916", 
              "https://doi.org/10.1007/bfb0027022"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10064-014-0638-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012839375", 
              "https://doi.org/10.1007/s10064-014-0638-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10706-012-9510-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024901061", 
              "https://doi.org/10.1007/s10706-012-9510-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10706-004-2143-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022190947", 
              "https://doi.org/10.1007/s10706-004-2143-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00603-007-0138-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024289044", 
              "https://doi.org/10.1007/s00603-007-0138-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00531-009-0506-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036151088", 
              "https://doi.org/10.1007/s00531-009-0506-5"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2015-08-19", 
        "datePublishedReg": "2015-08-19", 
        "description": "Uniaxial compressive strength (UCS) of rock is crucial for any type of projects constructed in/on rock mass. The test that is conducted to measure the UCS of rock is expensive, time consuming and having sample restriction. For this reason, the UCS of rock may be estimated using simple rock tests such as point load index (Is(50)), Schmidt hammer (Rn) and p-wave velocity (Vp) tests. To estimate the UCS of granitic rock as a function of relevant rock properties like Rn, p-wave and Is(50), the rock cores were collected from the face of the Pahang\u2013Selangor fresh water tunnel in Malaysia. Afterwards, 124 samples are prepared and tested in accordance with relevant standards and the dataset is obtained. Further an established dataset is used for estimating the UCS of rock via three-nonlinear prediction tools, namely non-linear multiple regression (NLMR), artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS). After conducting the mentioned models, considering several performance indices including coefficient of determination (R2), variance account for and root mean squared error and also using simple ranking procedure, the models were examined and the best prediction model was selected. It is concluded that the R2 equal to 0.951 for testing dataset suggests the superiority of the ANFIS model, while these values are 0.651 and 0.886 for NLMR and ANN techniques, respectively. The results pointed out that the ANFIS model can be used for predicting UCS of rocks with higher capacity in comparison with others. However, the developed model may be useful at a preliminary stage of design; it should be used with caution and only for the specified rock types.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s00366-015-0410-5", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1041785", 
            "issn": [
              "0177-0667", 
              "1435-5663"
            ], 
            "name": "Engineering with Computers", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "32"
          }
        ], 
        "keywords": [
          "granitic rocks", 
          "uniaxial compressive strength", 
          "relevant rock properties", 
          "non-linear multiple regression", 
          "point load index", 
          "rock types", 
          "UCS of rocks", 
          "rocks", 
          "rock properties", 
          "rock cores", 
          "rock mass", 
          "rock tests", 
          "Schmidt hammer", 
          "wave velocity tests", 
          "load index", 
          "root mean squared error", 
          "coefficient of determination", 
          "ANFIS model", 
          "ANN technique", 
          "adaptive neuro-fuzzy inference system", 
          "prediction model", 
          "artificial neural network", 
          "dataset", 
          "core", 
          "velocity test", 
          "water tunnel", 
          "waves", 
          "squared error", 
          "neuro-fuzzy inference system", 
          "model", 
          "mean squared error", 
          "prediction tools", 
          "variance account", 
          "compressive strength", 
          "preliminary stage", 
          "comparison", 
          "index", 
          "multiple regression", 
          "R2", 
          "mass", 
          "samples", 
          "types", 
          "tunnel", 
          "error", 
          "Malaysia", 
          "values", 
          "caution", 
          "project", 
          "stage", 
          "hammer", 
          "Rn", 
          "relevant standards", 
          "inference system", 
          "performance index", 
          "strength", 
          "time", 
          "coefficient", 
          "determination", 
          "best prediction model", 
          "high capacity", 
          "tool", 
          "system", 
          "account", 
          "results", 
          "accordance", 
          "regression", 
          "reasons", 
          "neural network", 
          "network", 
          "test", 
          "properties", 
          "technique", 
          "design", 
          "performance", 
          "capacity", 
          "types of projects", 
          "applications", 
          "face", 
          "standards", 
          "superiority", 
          "function", 
          "procedure", 
          "restriction", 
          "sample restrictions"
        ], 
        "name": "Application of several non-linear prediction tools for estimating uniaxial compressive strength of granitic rocks and comparison of their performances", 
        "pagination": "189-206", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1041240827"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00366-015-0410-5"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00366-015-0410-5", 
          "https://app.dimensions.ai/details/publication/pub.1041240827"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-05-10T10:10", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_678.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s00366-015-0410-5"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00366-015-0410-5'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00366-015-0410-5'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00366-015-0410-5'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00366-015-0410-5'


     

    This table displays all metadata directly associated to this object as RDF triples.

    310 TRIPLES      22 PREDICATES      142 URIs      101 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00366-015-0410-5 schema:about anzsrc-for:01
    2 anzsrc-for:0102
    3 anzsrc-for:08
    4 anzsrc-for:0801
    5 anzsrc-for:0802
    6 schema:author Nd77bb3078a9b4ac8afaea192dfeb3dc2
    7 schema:citation sg:pub.10.1007/978-1-4899-3099-6_2
    8 sg:pub.10.1007/bf00466369
    9 sg:pub.10.1007/bf02592622
    10 sg:pub.10.1007/bfb0027022
    11 sg:pub.10.1007/s00024-012-0556-7
    12 sg:pub.10.1007/s00366-011-0210-5
    13 sg:pub.10.1007/s00521-012-0817-5
    14 sg:pub.10.1007/s00521-012-0944-z
    15 sg:pub.10.1007/s00521-012-1221-x
    16 sg:pub.10.1007/s00531-009-0506-5
    17 sg:pub.10.1007/s00603-005-0050-y
    18 sg:pub.10.1007/s00603-006-0082-y
    19 sg:pub.10.1007/s00603-007-0138-7
    20 sg:pub.10.1007/s00603-011-0192-z
    21 sg:pub.10.1007/s10064-007-0109-y
    22 sg:pub.10.1007/s10064-008-0128-3
    23 sg:pub.10.1007/s10064-008-0172-z
    24 sg:pub.10.1007/s10064-009-0195-0
    25 sg:pub.10.1007/s10064-010-0301-3
    26 sg:pub.10.1007/s10064-014-0638-0
    27 sg:pub.10.1007/s10064-014-0687-4
    28 sg:pub.10.1007/s10706-004-2143-x
    29 sg:pub.10.1007/s10706-012-9510-9
    30 sg:pub.10.1007/s12034-011-0220-3
    31 sg:pub.10.1007/s12517-009-0035-3
    32 sg:pub.10.1007/s12517-011-0460-y
    33 sg:pub.10.1007/s12517-013-1174-0
    34 sg:pub.10.1007/s12517-014-1331-0
    35 sg:pub.10.1007/s12665-012-1783-z
    36 sg:pub.10.1023/a:1015066903985
    37 schema:datePublished 2015-08-19
    38 schema:datePublishedReg 2015-08-19
    39 schema:description Uniaxial compressive strength (UCS) of rock is crucial for any type of projects constructed in/on rock mass. The test that is conducted to measure the UCS of rock is expensive, time consuming and having sample restriction. For this reason, the UCS of rock may be estimated using simple rock tests such as point load index (Is(50)), Schmidt hammer (Rn) and p-wave velocity (Vp) tests. To estimate the UCS of granitic rock as a function of relevant rock properties like Rn, p-wave and Is(50), the rock cores were collected from the face of the Pahang–Selangor fresh water tunnel in Malaysia. Afterwards, 124 samples are prepared and tested in accordance with relevant standards and the dataset is obtained. Further an established dataset is used for estimating the UCS of rock via three-nonlinear prediction tools, namely non-linear multiple regression (NLMR), artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS). After conducting the mentioned models, considering several performance indices including coefficient of determination (R2), variance account for and root mean squared error and also using simple ranking procedure, the models were examined and the best prediction model was selected. It is concluded that the R2 equal to 0.951 for testing dataset suggests the superiority of the ANFIS model, while these values are 0.651 and 0.886 for NLMR and ANN techniques, respectively. The results pointed out that the ANFIS model can be used for predicting UCS of rocks with higher capacity in comparison with others. However, the developed model may be useful at a preliminary stage of design; it should be used with caution and only for the specified rock types.
    40 schema:genre article
    41 schema:inLanguage en
    42 schema:isAccessibleForFree false
    43 schema:isPartOf N5ee824a5251a4d669b5351991889e426
    44 Nbf6c909856144f4bb47fcbfe9c690367
    45 sg:journal.1041785
    46 schema:keywords ANFIS model
    47 ANN technique
    48 Malaysia
    49 R2
    50 Rn
    51 Schmidt hammer
    52 UCS of rocks
    53 accordance
    54 account
    55 adaptive neuro-fuzzy inference system
    56 applications
    57 artificial neural network
    58 best prediction model
    59 capacity
    60 caution
    61 coefficient
    62 coefficient of determination
    63 comparison
    64 compressive strength
    65 core
    66 dataset
    67 design
    68 determination
    69 error
    70 face
    71 function
    72 granitic rocks
    73 hammer
    74 high capacity
    75 index
    76 inference system
    77 load index
    78 mass
    79 mean squared error
    80 model
    81 multiple regression
    82 network
    83 neural network
    84 neuro-fuzzy inference system
    85 non-linear multiple regression
    86 performance
    87 performance index
    88 point load index
    89 prediction model
    90 prediction tools
    91 preliminary stage
    92 procedure
    93 project
    94 properties
    95 reasons
    96 regression
    97 relevant rock properties
    98 relevant standards
    99 restriction
    100 results
    101 rock cores
    102 rock mass
    103 rock properties
    104 rock tests
    105 rock types
    106 rocks
    107 root mean squared error
    108 sample restrictions
    109 samples
    110 squared error
    111 stage
    112 standards
    113 strength
    114 superiority
    115 system
    116 technique
    117 test
    118 time
    119 tool
    120 tunnel
    121 types
    122 types of projects
    123 uniaxial compressive strength
    124 values
    125 variance account
    126 velocity test
    127 water tunnel
    128 wave velocity tests
    129 waves
    130 schema:name Application of several non-linear prediction tools for estimating uniaxial compressive strength of granitic rocks and comparison of their performances
    131 schema:pagination 189-206
    132 schema:productId N2206054eba894d2dabedc249f6671755
    133 N9b923d9206f64a14bed39c0ed29ee8b9
    134 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041240827
    135 https://doi.org/10.1007/s00366-015-0410-5
    136 schema:sdDatePublished 2022-05-10T10:10
    137 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    138 schema:sdPublisher N82be67de4a4440f2ab80b5c04dd518e5
    139 schema:url https://doi.org/10.1007/s00366-015-0410-5
    140 sgo:license sg:explorer/license/
    141 sgo:sdDataset articles
    142 rdf:type schema:ScholarlyArticle
    143 N00fff4ed74b140248348ce620007a319 rdf:first sg:person.010532067637.20
    144 rdf:rest Ncf8b1a11596b4a8ab4da9d5de2f9c0d6
    145 N2206054eba894d2dabedc249f6671755 schema:name doi
    146 schema:value 10.1007/s00366-015-0410-5
    147 rdf:type schema:PropertyValue
    148 N5ee824a5251a4d669b5351991889e426 schema:volumeNumber 32
    149 rdf:type schema:PublicationVolume
    150 N797a8392a2674c4cb93afcee2193c740 rdf:first sg:person.011231325703.48
    151 rdf:rest Nf574a3acaba1462282ac7dea1a8db118
    152 N82be67de4a4440f2ab80b5c04dd518e5 schema:name Springer Nature - SN SciGraph project
    153 rdf:type schema:Organization
    154 N9b923d9206f64a14bed39c0ed29ee8b9 schema:name dimensions_id
    155 schema:value pub.1041240827
    156 rdf:type schema:PropertyValue
    157 Nbf6c909856144f4bb47fcbfe9c690367 schema:issueNumber 2
    158 rdf:type schema:PublicationIssue
    159 Ncf8b1a11596b4a8ab4da9d5de2f9c0d6 rdf:first sg:person.01213305202.05
    160 rdf:rest N797a8392a2674c4cb93afcee2193c740
    161 Nd77bb3078a9b4ac8afaea192dfeb3dc2 rdf:first sg:person.012214152011.74
    162 rdf:rest N00fff4ed74b140248348ce620007a319
    163 Nf574a3acaba1462282ac7dea1a8db118 rdf:first sg:person.016537667057.91
    164 rdf:rest rdf:nil
    165 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    166 schema:name Mathematical Sciences
    167 rdf:type schema:DefinedTerm
    168 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
    169 schema:name Applied Mathematics
    170 rdf:type schema:DefinedTerm
    171 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    172 schema:name Information and Computing Sciences
    173 rdf:type schema:DefinedTerm
    174 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    175 schema:name Artificial Intelligence and Image Processing
    176 rdf:type schema:DefinedTerm
    177 anzsrc-for:0802 schema:inDefinedTermSet anzsrc-for:
    178 schema:name Computation Theory and Mathematics
    179 rdf:type schema:DefinedTerm
    180 sg:journal.1041785 schema:issn 0177-0667
    181 1435-5663
    182 schema:name Engineering with Computers
    183 schema:publisher Springer Nature
    184 rdf:type schema:Periodical
    185 sg:person.010532067637.20 schema:affiliation grid-institutes:grid.410877.d
    186 schema:familyName Tonnizam Mohamad
    187 schema:givenName Edy
    188 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010532067637.20
    189 rdf:type schema:Person
    190 sg:person.011231325703.48 schema:affiliation grid-institutes:grid.411742.5
    191 schema:familyName Yagiz
    192 schema:givenName Saffet
    193 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011231325703.48
    194 rdf:type schema:Person
    195 sg:person.01213305202.05 schema:affiliation grid-institutes:grid.410877.d
    196 schema:familyName Hajihassani
    197 schema:givenName Mohsen
    198 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01213305202.05
    199 rdf:type schema:Person
    200 sg:person.012214152011.74 schema:affiliation grid-institutes:grid.410877.d
    201 schema:familyName Jahed Armaghani
    202 schema:givenName Danial
    203 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012214152011.74
    204 rdf:type schema:Person
    205 sg:person.016537667057.91 schema:affiliation grid-institutes:grid.411463.5
    206 schema:familyName Motaghedi
    207 schema:givenName Hossein
    208 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016537667057.91
    209 rdf:type schema:Person
    210 sg:pub.10.1007/978-1-4899-3099-6_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1089745563
    211 https://doi.org/10.1007/978-1-4899-3099-6_2
    212 rdf:type schema:CreativeWork
    213 sg:pub.10.1007/bf00466369 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012661423
    214 https://doi.org/10.1007/bf00466369
    215 rdf:type schema:CreativeWork
    216 sg:pub.10.1007/bf02592622 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044941281
    217 https://doi.org/10.1007/bf02592622
    218 rdf:type schema:CreativeWork
    219 sg:pub.10.1007/bfb0027022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003977916
    220 https://doi.org/10.1007/bfb0027022
    221 rdf:type schema:CreativeWork
    222 sg:pub.10.1007/s00024-012-0556-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030955705
    223 https://doi.org/10.1007/s00024-012-0556-7
    224 rdf:type schema:CreativeWork
    225 sg:pub.10.1007/s00366-011-0210-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029681557
    226 https://doi.org/10.1007/s00366-011-0210-5
    227 rdf:type schema:CreativeWork
    228 sg:pub.10.1007/s00521-012-0817-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024417308
    229 https://doi.org/10.1007/s00521-012-0817-5
    230 rdf:type schema:CreativeWork
    231 sg:pub.10.1007/s00521-012-0944-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1010393270
    232 https://doi.org/10.1007/s00521-012-0944-z
    233 rdf:type schema:CreativeWork
    234 sg:pub.10.1007/s00521-012-1221-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1023245237
    235 https://doi.org/10.1007/s00521-012-1221-x
    236 rdf:type schema:CreativeWork
    237 sg:pub.10.1007/s00531-009-0506-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036151088
    238 https://doi.org/10.1007/s00531-009-0506-5
    239 rdf:type schema:CreativeWork
    240 sg:pub.10.1007/s00603-005-0050-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1028753726
    241 https://doi.org/10.1007/s00603-005-0050-y
    242 rdf:type schema:CreativeWork
    243 sg:pub.10.1007/s00603-006-0082-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1005198452
    244 https://doi.org/10.1007/s00603-006-0082-y
    245 rdf:type schema:CreativeWork
    246 sg:pub.10.1007/s00603-007-0138-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024289044
    247 https://doi.org/10.1007/s00603-007-0138-7
    248 rdf:type schema:CreativeWork
    249 sg:pub.10.1007/s00603-011-0192-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1010372358
    250 https://doi.org/10.1007/s00603-011-0192-z
    251 rdf:type schema:CreativeWork
    252 sg:pub.10.1007/s10064-007-0109-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1013717643
    253 https://doi.org/10.1007/s10064-007-0109-y
    254 rdf:type schema:CreativeWork
    255 sg:pub.10.1007/s10064-008-0128-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051476425
    256 https://doi.org/10.1007/s10064-008-0128-3
    257 rdf:type schema:CreativeWork
    258 sg:pub.10.1007/s10064-008-0172-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1019387051
    259 https://doi.org/10.1007/s10064-008-0172-z
    260 rdf:type schema:CreativeWork
    261 sg:pub.10.1007/s10064-009-0195-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002642520
    262 https://doi.org/10.1007/s10064-009-0195-0
    263 rdf:type schema:CreativeWork
    264 sg:pub.10.1007/s10064-010-0301-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043431656
    265 https://doi.org/10.1007/s10064-010-0301-3
    266 rdf:type schema:CreativeWork
    267 sg:pub.10.1007/s10064-014-0638-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012839375
    268 https://doi.org/10.1007/s10064-014-0638-0
    269 rdf:type schema:CreativeWork
    270 sg:pub.10.1007/s10064-014-0687-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038842643
    271 https://doi.org/10.1007/s10064-014-0687-4
    272 rdf:type schema:CreativeWork
    273 sg:pub.10.1007/s10706-004-2143-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1022190947
    274 https://doi.org/10.1007/s10706-004-2143-x
    275 rdf:type schema:CreativeWork
    276 sg:pub.10.1007/s10706-012-9510-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024901061
    277 https://doi.org/10.1007/s10706-012-9510-9
    278 rdf:type schema:CreativeWork
    279 sg:pub.10.1007/s12034-011-0220-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024252087
    280 https://doi.org/10.1007/s12034-011-0220-3
    281 rdf:type schema:CreativeWork
    282 sg:pub.10.1007/s12517-009-0035-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018402843
    283 https://doi.org/10.1007/s12517-009-0035-3
    284 rdf:type schema:CreativeWork
    285 sg:pub.10.1007/s12517-011-0460-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1017130945
    286 https://doi.org/10.1007/s12517-011-0460-y
    287 rdf:type schema:CreativeWork
    288 sg:pub.10.1007/s12517-013-1174-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038954491
    289 https://doi.org/10.1007/s12517-013-1174-0
    290 rdf:type schema:CreativeWork
    291 sg:pub.10.1007/s12517-014-1331-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015338444
    292 https://doi.org/10.1007/s12517-014-1331-0
    293 rdf:type schema:CreativeWork
    294 sg:pub.10.1007/s12665-012-1783-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1017168196
    295 https://doi.org/10.1007/s12665-012-1783-z
    296 rdf:type schema:CreativeWork
    297 sg:pub.10.1023/a:1015066903985 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001735557
    298 https://doi.org/10.1023/a:1015066903985
    299 rdf:type schema:CreativeWork
    300 grid-institutes:grid.410877.d schema:alternateName Construction Research Alliance, Universiti Teknologi Malaysia (UTM), 81310, Skudai, Johor, Malaysia
    301 Department of Geotechnics and Transportation, Faculty of Civil Engineering, Universiti Teknologi Malaysia (UTM), 81310, Skudai, Johor, Malaysia
    302 schema:name Construction Research Alliance, Universiti Teknologi Malaysia (UTM), 81310, Skudai, Johor, Malaysia
    303 Department of Geotechnics and Transportation, Faculty of Civil Engineering, Universiti Teknologi Malaysia (UTM), 81310, Skudai, Johor, Malaysia
    304 rdf:type schema:Organization
    305 grid-institutes:grid.411463.5 schema:alternateName Department of Civil Engineering, Islamic Azad University, Qaemshahr Branch, Qaemshahr, Iran
    306 schema:name Department of Civil Engineering, Islamic Azad University, Qaemshahr Branch, Qaemshahr, Iran
    307 rdf:type schema:Organization
    308 grid-institutes:grid.411742.5 schema:alternateName Department of Geological Engineering, Engineering Faculty, Pamukkale University, 20020, Denizli, Turkey
    309 schema:name Department of Geological Engineering, Engineering Faculty, Pamukkale University, 20020, Denizli, Turkey
    310 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...