Menshov Type Correction Theorems for Sequences of Compact Operators View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03-28

AUTHORS

Grigori A. Karagulyan

ABSTRACT

We prove Menshov type “correction” theorems for sequences of compact operators, recovering several results of Fourier series in trigonometric and Walsh systems. The paper clarifies the main ingredient that is important in the study of such “correction” theorems. That is the weak-L1 estimate for the maximal Fourier sums of indicator functions of some specific sets. More... »

PAGES

1-22

References to SciGraph publications

Journal

TITLE

Constructive Approximation

ISSUE

N/A

VOLUME

N/A

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00365-019-09459-0

DOI

http://dx.doi.org/10.1007/s00365-019-09459-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1113059626


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Yerevan State University", 
          "id": "https://www.grid.ac/institutes/grid.21072.36", 
          "name": [
            "Faculty of Mathematics and Mechanics, Yerevan State University, Alex Manoogian, 1, 0025, Yerevan, Armenia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Karagulyan", 
        "givenName": "Grigori A.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1014335819", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-011-3288-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014335819", 
          "https://doi.org/10.1007/978-94-011-3288-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-011-3288-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014335819", 
          "https://doi.org/10.1007/978-94-011-3288-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01907344", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049107101", 
          "https://doi.org/10.1007/bf01907344"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00029890.1970.11992436", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103211352"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03-28", 
    "datePublishedReg": "2019-03-28", 
    "description": "We prove Menshov type \u201ccorrection\u201d theorems for sequences of compact operators, recovering several results of Fourier series in trigonometric and Walsh systems. The paper clarifies the main ingredient that is important in the study of such \u201ccorrection\u201d theorems. That is the weak-L1 estimate for the maximal Fourier sums of indicator functions of some specific sets.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00365-019-09459-0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1135933", 
        "issn": [
          "0176-4276", 
          "1432-0940"
        ], 
        "name": "Constructive Approximation", 
        "type": "Periodical"
      }
    ], 
    "name": "Menshov Type Correction Theorems for Sequences of Compact Operators", 
    "pagination": "1-22", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "d20aa34ce207f2ed460b5579c2811e8b7275c7f9bd7db02294369a199859dab7"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00365-019-09459-0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1113059626"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00365-019-09459-0", 
      "https://app.dimensions.ai/details/publication/pub.1113059626"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:17", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000368_0000000368/records_78934_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00365-019-09459-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00365-019-09459-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00365-019-09459-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00365-019-09459-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00365-019-09459-0'


 

This table displays all metadata directly associated to this object as RDF triples.

67 TRIPLES      21 PREDICATES      28 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00365-019-09459-0 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N0a4d5367293e436a84ca74a2a86605b5
4 schema:citation sg:pub.10.1007/978-94-011-3288-6
5 sg:pub.10.1007/bf01907344
6 https://app.dimensions.ai/details/publication/pub.1014335819
7 https://doi.org/10.1080/00029890.1970.11992436
8 schema:datePublished 2019-03-28
9 schema:datePublishedReg 2019-03-28
10 schema:description We prove Menshov type “correction” theorems for sequences of compact operators, recovering several results of Fourier series in trigonometric and Walsh systems. The paper clarifies the main ingredient that is important in the study of such “correction” theorems. That is the weak-L1 estimate for the maximal Fourier sums of indicator functions of some specific sets.
11 schema:genre research_article
12 schema:inLanguage en
13 schema:isAccessibleForFree false
14 schema:isPartOf sg:journal.1135933
15 schema:name Menshov Type Correction Theorems for Sequences of Compact Operators
16 schema:pagination 1-22
17 schema:productId N1eaa734e9f64439fbb8dd41a8126b83d
18 N6529fba16dd04151a803c9596ae95267
19 Na2b97268e4fc4dac801a23d01c78e07a
20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113059626
21 https://doi.org/10.1007/s00365-019-09459-0
22 schema:sdDatePublished 2019-04-11T13:17
23 schema:sdLicense https://scigraph.springernature.com/explorer/license/
24 schema:sdPublisher N921071f3e88c46eaa4a37fb9c8a370f7
25 schema:url https://link.springer.com/10.1007%2Fs00365-019-09459-0
26 sgo:license sg:explorer/license/
27 sgo:sdDataset articles
28 rdf:type schema:ScholarlyArticle
29 N0a4d5367293e436a84ca74a2a86605b5 rdf:first N9f63461be19549e6876c5f2b4c8c1734
30 rdf:rest rdf:nil
31 N1eaa734e9f64439fbb8dd41a8126b83d schema:name readcube_id
32 schema:value d20aa34ce207f2ed460b5579c2811e8b7275c7f9bd7db02294369a199859dab7
33 rdf:type schema:PropertyValue
34 N6529fba16dd04151a803c9596ae95267 schema:name doi
35 schema:value 10.1007/s00365-019-09459-0
36 rdf:type schema:PropertyValue
37 N921071f3e88c46eaa4a37fb9c8a370f7 schema:name Springer Nature - SN SciGraph project
38 rdf:type schema:Organization
39 N9f63461be19549e6876c5f2b4c8c1734 schema:affiliation https://www.grid.ac/institutes/grid.21072.36
40 schema:familyName Karagulyan
41 schema:givenName Grigori A.
42 rdf:type schema:Person
43 Na2b97268e4fc4dac801a23d01c78e07a schema:name dimensions_id
44 schema:value pub.1113059626
45 rdf:type schema:PropertyValue
46 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
47 schema:name Mathematical Sciences
48 rdf:type schema:DefinedTerm
49 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
50 schema:name Pure Mathematics
51 rdf:type schema:DefinedTerm
52 sg:journal.1135933 schema:issn 0176-4276
53 1432-0940
54 schema:name Constructive Approximation
55 rdf:type schema:Periodical
56 sg:pub.10.1007/978-94-011-3288-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014335819
57 https://doi.org/10.1007/978-94-011-3288-6
58 rdf:type schema:CreativeWork
59 sg:pub.10.1007/bf01907344 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049107101
60 https://doi.org/10.1007/bf01907344
61 rdf:type schema:CreativeWork
62 https://app.dimensions.ai/details/publication/pub.1014335819 schema:CreativeWork
63 https://doi.org/10.1080/00029890.1970.11992436 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103211352
64 rdf:type schema:CreativeWork
65 https://www.grid.ac/institutes/grid.21072.36 schema:alternateName Yerevan State University
66 schema:name Faculty of Mathematics and Mechanics, Yerevan State University, Alex Manoogian, 1, 0025, Yerevan, Armenia
67 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...