Menshov Type Correction Theorems for Sequences of Compact Operators View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03-28

AUTHORS

Grigori A. Karagulyan

ABSTRACT

We prove Menshov type “correction” theorems for sequences of compact operators, recovering several results of Fourier series in trigonometric and Walsh systems. The paper clarifies the main ingredient that is important in the study of such “correction” theorems. That is the weak-L1 estimate for the maximal Fourier sums of indicator functions of some specific sets. More... »

PAGES

1-22

References to SciGraph publications

Journal

TITLE

Constructive Approximation

ISSUE

N/A

VOLUME

N/A

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00365-019-09459-0

DOI

http://dx.doi.org/10.1007/s00365-019-09459-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1113059626


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Yerevan State University", 
          "id": "https://www.grid.ac/institutes/grid.21072.36", 
          "name": [
            "Faculty of Mathematics and Mechanics, Yerevan State University, Alex Manoogian, 1, 0025, Yerevan, Armenia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Karagulyan", 
        "givenName": "Grigori A.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1014335819", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-011-3288-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014335819", 
          "https://doi.org/10.1007/978-94-011-3288-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-011-3288-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014335819", 
          "https://doi.org/10.1007/978-94-011-3288-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01907344", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049107101", 
          "https://doi.org/10.1007/bf01907344"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00029890.1970.11992436", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103211352"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03-28", 
    "datePublishedReg": "2019-03-28", 
    "description": "We prove Menshov type \u201ccorrection\u201d theorems for sequences of compact operators, recovering several results of Fourier series in trigonometric and Walsh systems. The paper clarifies the main ingredient that is important in the study of such \u201ccorrection\u201d theorems. That is the weak-L1 estimate for the maximal Fourier sums of indicator functions of some specific sets.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00365-019-09459-0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1135933", 
        "issn": [
          "0176-4276", 
          "1432-0940"
        ], 
        "name": "Constructive Approximation", 
        "type": "Periodical"
      }
    ], 
    "name": "Menshov Type Correction Theorems for Sequences of Compact Operators", 
    "pagination": "1-22", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "d20aa34ce207f2ed460b5579c2811e8b7275c7f9bd7db02294369a199859dab7"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00365-019-09459-0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1113059626"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00365-019-09459-0", 
      "https://app.dimensions.ai/details/publication/pub.1113059626"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:17", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000368_0000000368/records_78934_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00365-019-09459-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00365-019-09459-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00365-019-09459-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00365-019-09459-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00365-019-09459-0'


 

This table displays all metadata directly associated to this object as RDF triples.

67 TRIPLES      21 PREDICATES      28 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00365-019-09459-0 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Nc1345f4a4ce74683bbf3618939bf6d48
4 schema:citation sg:pub.10.1007/978-94-011-3288-6
5 sg:pub.10.1007/bf01907344
6 https://app.dimensions.ai/details/publication/pub.1014335819
7 https://doi.org/10.1080/00029890.1970.11992436
8 schema:datePublished 2019-03-28
9 schema:datePublishedReg 2019-03-28
10 schema:description We prove Menshov type “correction” theorems for sequences of compact operators, recovering several results of Fourier series in trigonometric and Walsh systems. The paper clarifies the main ingredient that is important in the study of such “correction” theorems. That is the weak-L1 estimate for the maximal Fourier sums of indicator functions of some specific sets.
11 schema:genre research_article
12 schema:inLanguage en
13 schema:isAccessibleForFree false
14 schema:isPartOf sg:journal.1135933
15 schema:name Menshov Type Correction Theorems for Sequences of Compact Operators
16 schema:pagination 1-22
17 schema:productId N79df25c871734926bdf169200ac8497c
18 Nee529539b95d47c988ef32e1d5ae9b95
19 Nfbf009f6da8049ff95faca601cdd0326
20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113059626
21 https://doi.org/10.1007/s00365-019-09459-0
22 schema:sdDatePublished 2019-04-11T13:17
23 schema:sdLicense https://scigraph.springernature.com/explorer/license/
24 schema:sdPublisher N8976653825264edeab21b1237ec3a83f
25 schema:url https://link.springer.com/10.1007%2Fs00365-019-09459-0
26 sgo:license sg:explorer/license/
27 sgo:sdDataset articles
28 rdf:type schema:ScholarlyArticle
29 N79df25c871734926bdf169200ac8497c schema:name readcube_id
30 schema:value d20aa34ce207f2ed460b5579c2811e8b7275c7f9bd7db02294369a199859dab7
31 rdf:type schema:PropertyValue
32 N7c6383add09949a792563d8ac62e0675 schema:affiliation https://www.grid.ac/institutes/grid.21072.36
33 schema:familyName Karagulyan
34 schema:givenName Grigori A.
35 rdf:type schema:Person
36 N8976653825264edeab21b1237ec3a83f schema:name Springer Nature - SN SciGraph project
37 rdf:type schema:Organization
38 Nc1345f4a4ce74683bbf3618939bf6d48 rdf:first N7c6383add09949a792563d8ac62e0675
39 rdf:rest rdf:nil
40 Nee529539b95d47c988ef32e1d5ae9b95 schema:name dimensions_id
41 schema:value pub.1113059626
42 rdf:type schema:PropertyValue
43 Nfbf009f6da8049ff95faca601cdd0326 schema:name doi
44 schema:value 10.1007/s00365-019-09459-0
45 rdf:type schema:PropertyValue
46 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
47 schema:name Mathematical Sciences
48 rdf:type schema:DefinedTerm
49 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
50 schema:name Pure Mathematics
51 rdf:type schema:DefinedTerm
52 sg:journal.1135933 schema:issn 0176-4276
53 1432-0940
54 schema:name Constructive Approximation
55 rdf:type schema:Periodical
56 sg:pub.10.1007/978-94-011-3288-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014335819
57 https://doi.org/10.1007/978-94-011-3288-6
58 rdf:type schema:CreativeWork
59 sg:pub.10.1007/bf01907344 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049107101
60 https://doi.org/10.1007/bf01907344
61 rdf:type schema:CreativeWork
62 https://app.dimensions.ai/details/publication/pub.1014335819 schema:CreativeWork
63 https://doi.org/10.1080/00029890.1970.11992436 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103211352
64 rdf:type schema:CreativeWork
65 https://www.grid.ac/institutes/grid.21072.36 schema:alternateName Yerevan State University
66 schema:name Faculty of Mathematics and Mechanics, Yerevan State University, Alex Manoogian, 1, 0025, Yerevan, Armenia
67 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...