Extremal Functions with Vanishing Condition View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2015-10

AUTHORS

Friedrich Littmann, Mark Spanier

ABSTRACT

For a Hermite–Biehler function E of mean type τ, we determine the optimal (with respect to the de Branges measure of E) majorant ME+ and minorant ME- of exponential type τ for the truncation of x↦(x2+a2)-1. We prove that ∫RME+(x)-ME-(x)|E(x)|-2dx=1a2K(0,0),where K is the reproducing kernel for the de Branges space H(E). As an application, we determine the optimal majorant and minorant for the Heaviside function that vanish at a fixed point α=ia on the imaginary axis. We show that the difference of majorant and minorant has integral value (πa-tanh(πa))-1πa. More... »

PAGES

209-229

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00365-015-9304-4

DOI

http://dx.doi.org/10.1007/s00365-015-9304-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1052737357


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1109", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Neurosciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "North Dakota State University", 
          "id": "https://www.grid.ac/institutes/grid.261055.5", 
          "name": [
            "Department of Mathematics, North Dakota State University, 58105, Fargo, ND, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Littmann", 
        "givenName": "Friedrich", 
        "id": "sg:person.011455216265.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011455216265.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Dakota State University", 
          "id": "https://www.grid.ac/institutes/grid.254833.b", 
          "name": [
            "College of Arts and Sciences, Dakota State University, 57042, Madison, SD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Spanier", 
        "givenName": "Mark", 
        "id": "sg:person.011141215403.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011141215403.87"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.aim.2014.04.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001631419"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02790092", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006321909", 
          "https://doi.org/10.1007/bf02790092"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02790092", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006321909", 
          "https://doi.org/10.1007/bf02790092"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0081543813020041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013817590", 
          "https://doi.org/10.1134/s0081543813020041"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0002-9947-1960-0133455-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014508014"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0273-0979-1985-15349-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018397863"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jat.2012.02.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036939691"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/crll.1985.362.72", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040530972"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1043716027", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-0348-8520-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043716027", 
          "https://doi.org/10.1007/978-3-0348-8520-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-0348-8520-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043716027", 
          "https://doi.org/10.1007/978-3-0348-8520-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jat.2003.09.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052012915"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0002-9947-2013-05716-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059335870"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1112/s0025579314000199", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062056924"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0152031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062841004"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/120888004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062869780"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1215/s0012-7094-96-08309-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064420199"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/9789812776600_0013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1088714568"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9781107325791", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098682714"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-10", 
    "datePublishedReg": "2015-10-01", 
    "description": "For a Hermite\u2013Biehler function E of mean type \u03c4, we determine the optimal (with respect to the de Branges measure of E) majorant ME+ and minorant ME- of exponential type \u03c4 for the truncation of x\u21a6(x2+a2)-1. We prove that \u222bRME+(x)-ME-(x)|E(x)|-2dx=1a2K(0,0),where K is the reproducing kernel for the de Branges space H(E). As an application, we determine the optimal majorant and minorant for the Heaviside function that vanish at a fixed point \u03b1=ia on the imaginary axis. We show that the difference of majorant and minorant has integral value (\u03c0a-tanh(\u03c0a))-1\u03c0a.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00365-015-9304-4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1135933", 
        "issn": [
          "0176-4276", 
          "1432-0940"
        ], 
        "name": "Constructive Approximation", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "42"
      }
    ], 
    "name": "Extremal Functions with Vanishing Condition", 
    "pagination": "209-229", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "fb3445408bbf6620ea342543cca5b2004bcabc45441ba45b06410a057809466d"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00365-015-9304-4"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1052737357"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00365-015-9304-4", 
      "https://app.dimensions.ai/details/publication/pub.1052737357"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T19:09", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8678_00000516.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs00365-015-9304-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00365-015-9304-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00365-015-9304-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00365-015-9304-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00365-015-9304-4'


 

This table displays all metadata directly associated to this object as RDF triples.

124 TRIPLES      21 PREDICATES      44 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00365-015-9304-4 schema:about anzsrc-for:11
2 anzsrc-for:1109
3 schema:author N4755720f71a548bd9278f2651d4f870c
4 schema:citation sg:pub.10.1007/978-3-0348-8520-1
5 sg:pub.10.1007/bf02790092
6 sg:pub.10.1134/s0081543813020041
7 https://app.dimensions.ai/details/publication/pub.1043716027
8 https://doi.org/10.1016/j.aim.2014.04.007
9 https://doi.org/10.1016/j.jat.2003.09.002
10 https://doi.org/10.1016/j.jat.2012.02.006
11 https://doi.org/10.1017/cbo9781107325791
12 https://doi.org/10.1090/s0002-9947-1960-0133455-x
13 https://doi.org/10.1090/s0002-9947-2013-05716-9
14 https://doi.org/10.1090/s0273-0979-1985-15349-2
15 https://doi.org/10.1112/s0025579314000199
16 https://doi.org/10.1137/0152031
17 https://doi.org/10.1137/120888004
18 https://doi.org/10.1142/9789812776600_0013
19 https://doi.org/10.1215/s0012-7094-96-08309-x
20 https://doi.org/10.1515/crll.1985.362.72
21 schema:datePublished 2015-10
22 schema:datePublishedReg 2015-10-01
23 schema:description For a Hermite–Biehler function E of mean type τ, we determine the optimal (with respect to the de Branges measure of E) majorant ME+ and minorant ME- of exponential type τ for the truncation of x↦(x2+a2)-1. We prove that ∫RME+(x)-ME-(x)|E(x)|-2dx=1a2K(0,0),where K is the reproducing kernel for the de Branges space H(E). As an application, we determine the optimal majorant and minorant for the Heaviside function that vanish at a fixed point α=ia on the imaginary axis. We show that the difference of majorant and minorant has integral value (πa-tanh(πa))-1πa.
24 schema:genre research_article
25 schema:inLanguage en
26 schema:isAccessibleForFree true
27 schema:isPartOf N2ad65f6d16d54bed9a3761f5eb8727d3
28 Nf208ae469e9c48bbbaa4264910d53d20
29 sg:journal.1135933
30 schema:name Extremal Functions with Vanishing Condition
31 schema:pagination 209-229
32 schema:productId N1644028cf1364c0e9cb45b54e96430e2
33 N9a2bc40b5c6c4107a19b1750e35a751a
34 Nccdc0c4ca3774c3da95b02ea8d45a5c2
35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052737357
36 https://doi.org/10.1007/s00365-015-9304-4
37 schema:sdDatePublished 2019-04-10T19:09
38 schema:sdLicense https://scigraph.springernature.com/explorer/license/
39 schema:sdPublisher N30f589338f7442ddb83083f0aea98d20
40 schema:url http://link.springer.com/10.1007%2Fs00365-015-9304-4
41 sgo:license sg:explorer/license/
42 sgo:sdDataset articles
43 rdf:type schema:ScholarlyArticle
44 N1644028cf1364c0e9cb45b54e96430e2 schema:name dimensions_id
45 schema:value pub.1052737357
46 rdf:type schema:PropertyValue
47 N2ad65f6d16d54bed9a3761f5eb8727d3 schema:volumeNumber 42
48 rdf:type schema:PublicationVolume
49 N30f589338f7442ddb83083f0aea98d20 schema:name Springer Nature - SN SciGraph project
50 rdf:type schema:Organization
51 N4755720f71a548bd9278f2651d4f870c rdf:first sg:person.011455216265.52
52 rdf:rest Nc484bb145ca447a58b7b0d0087a768c2
53 N9a2bc40b5c6c4107a19b1750e35a751a schema:name readcube_id
54 schema:value fb3445408bbf6620ea342543cca5b2004bcabc45441ba45b06410a057809466d
55 rdf:type schema:PropertyValue
56 Nc484bb145ca447a58b7b0d0087a768c2 rdf:first sg:person.011141215403.87
57 rdf:rest rdf:nil
58 Nccdc0c4ca3774c3da95b02ea8d45a5c2 schema:name doi
59 schema:value 10.1007/s00365-015-9304-4
60 rdf:type schema:PropertyValue
61 Nf208ae469e9c48bbbaa4264910d53d20 schema:issueNumber 2
62 rdf:type schema:PublicationIssue
63 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
64 schema:name Medical and Health Sciences
65 rdf:type schema:DefinedTerm
66 anzsrc-for:1109 schema:inDefinedTermSet anzsrc-for:
67 schema:name Neurosciences
68 rdf:type schema:DefinedTerm
69 sg:journal.1135933 schema:issn 0176-4276
70 1432-0940
71 schema:name Constructive Approximation
72 rdf:type schema:Periodical
73 sg:person.011141215403.87 schema:affiliation https://www.grid.ac/institutes/grid.254833.b
74 schema:familyName Spanier
75 schema:givenName Mark
76 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011141215403.87
77 rdf:type schema:Person
78 sg:person.011455216265.52 schema:affiliation https://www.grid.ac/institutes/grid.261055.5
79 schema:familyName Littmann
80 schema:givenName Friedrich
81 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011455216265.52
82 rdf:type schema:Person
83 sg:pub.10.1007/978-3-0348-8520-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043716027
84 https://doi.org/10.1007/978-3-0348-8520-1
85 rdf:type schema:CreativeWork
86 sg:pub.10.1007/bf02790092 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006321909
87 https://doi.org/10.1007/bf02790092
88 rdf:type schema:CreativeWork
89 sg:pub.10.1134/s0081543813020041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013817590
90 https://doi.org/10.1134/s0081543813020041
91 rdf:type schema:CreativeWork
92 https://app.dimensions.ai/details/publication/pub.1043716027 schema:CreativeWork
93 https://doi.org/10.1016/j.aim.2014.04.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001631419
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1016/j.jat.2003.09.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052012915
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1016/j.jat.2012.02.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036939691
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1017/cbo9781107325791 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098682714
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1090/s0002-9947-1960-0133455-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1014508014
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1090/s0002-9947-2013-05716-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059335870
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1090/s0273-0979-1985-15349-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018397863
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1112/s0025579314000199 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062056924
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1137/0152031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062841004
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1137/120888004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062869780
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1142/9789812776600_0013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1088714568
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1215/s0012-7094-96-08309-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1064420199
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1515/crll.1985.362.72 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040530972
118 rdf:type schema:CreativeWork
119 https://www.grid.ac/institutes/grid.254833.b schema:alternateName Dakota State University
120 schema:name College of Arts and Sciences, Dakota State University, 57042, Madison, SD, USA
121 rdf:type schema:Organization
122 https://www.grid.ac/institutes/grid.261055.5 schema:alternateName North Dakota State University
123 schema:name Department of Mathematics, North Dakota State University, 58105, Fargo, ND, USA
124 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...