Adaptive designs for drug combination informed by longitudinal model for the response View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-01-02

AUTHORS

Tobias Mielke, Vladimir Dragalin

ABSTRACT

Objectives in Phase II drug combination studies are to estimate the efficacy response surface for the combination of doses of different drugs and to select the most efficient combination for the final Phase III clinical trial. One problem is to find an optimal design that allocates subjects to the dose-combinations which will maximize the information obtained in the trial. Adaptive designs help in these situations to ensure high efficiency of the study design. We are using a binary efficacy endpoint and consider the practical situation when the timing of the endpoint assessment period on the subject level is considerably longer relative to the inter-arrival time of subjects. This poses implementation challenges for the adaptive design. A solution to the adaptive design problem by using time-to-event models as longitudinal model will be presented. More... »

PAGES

1-17

Journal

TITLE

Statistical Papers

ISSUE

N/A

VOLUME

N/A

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00362-018-01073-9

DOI

http://dx.doi.org/10.1007/s00362-018-01073-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111057350


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Janssen (Germany)", 
          "id": "https://www.grid.ac/institutes/grid.497524.9", 
          "name": [
            "Janssen, Johnson & Johnson Platz 1, 41470, Neuss, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mielke", 
        "givenName": "Tobias", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Janssen (United States)", 
          "id": "https://www.grid.ac/institutes/grid.497530.c", 
          "name": [
            "Janssen, 1400 McKean Rd, 19477, Spring House, PA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dragalin", 
        "givenName": "Vladimir", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1214/13-ba839", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004802920"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1010944819", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4614-6363-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010944819", 
          "https://doi.org/10.1007/978-1-4614-6363-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4614-6363-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010944819", 
          "https://doi.org/10.1007/978-1-4614-6363-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/sim.6200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036108557"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jspi.2012.09.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046742181"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4153/cjm-1960-030-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072264311"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1108475001", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-01-02", 
    "datePublishedReg": "2019-01-02", 
    "description": "Objectives in Phase II drug combination studies are to estimate the efficacy response surface for the combination of doses of different drugs and to select the most efficient combination for the final Phase III clinical trial. One problem is to find an optimal design that allocates subjects to the dose-combinations which will maximize the information obtained in the trial. Adaptive designs help in these situations to ensure high efficiency of the study design. We are using a binary efficacy endpoint and consider the practical situation when the timing of the endpoint assessment period on the subject level is considerably longer relative to the inter-arrival time of subjects. This poses implementation challenges for the adaptive design. A solution to the adaptive design problem by using time-to-event models as longitudinal model will be presented.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00362-018-01073-9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1051623", 
        "issn": [
          "0932-5026", 
          "1613-9798"
        ], 
        "name": "Statistical Papers", 
        "type": "Periodical"
      }
    ], 
    "name": "Adaptive designs for drug combination informed by longitudinal model for the response", 
    "pagination": "1-17", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "8ece213d429da5b1afd8b2a929c1b899176f46c5de3b9c97c813acb5ac699085"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00362-018-01073-9"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111057350"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00362-018-01073-9", 
      "https://app.dimensions.ai/details/publication/pub.1111057350"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:33", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000310_0000000310/records_90733_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00362-018-01073-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00362-018-01073-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00362-018-01073-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00362-018-01073-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00362-018-01073-9'


 

This table displays all metadata directly associated to this object as RDF triples.

83 TRIPLES      21 PREDICATES      31 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00362-018-01073-9 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author Nd290b8f2182c44c1a46e41e0d069db67
4 schema:citation sg:pub.10.1007/978-1-4614-6363-4
5 https://app.dimensions.ai/details/publication/pub.1010944819
6 https://app.dimensions.ai/details/publication/pub.1108475001
7 https://doi.org/10.1002/sim.6200
8 https://doi.org/10.1016/j.jspi.2012.09.012
9 https://doi.org/10.1214/13-ba839
10 https://doi.org/10.4153/cjm-1960-030-4
11 schema:datePublished 2019-01-02
12 schema:datePublishedReg 2019-01-02
13 schema:description Objectives in Phase II drug combination studies are to estimate the efficacy response surface for the combination of doses of different drugs and to select the most efficient combination for the final Phase III clinical trial. One problem is to find an optimal design that allocates subjects to the dose-combinations which will maximize the information obtained in the trial. Adaptive designs help in these situations to ensure high efficiency of the study design. We are using a binary efficacy endpoint and consider the practical situation when the timing of the endpoint assessment period on the subject level is considerably longer relative to the inter-arrival time of subjects. This poses implementation challenges for the adaptive design. A solution to the adaptive design problem by using time-to-event models as longitudinal model will be presented.
14 schema:genre research_article
15 schema:inLanguage en
16 schema:isAccessibleForFree false
17 schema:isPartOf sg:journal.1051623
18 schema:name Adaptive designs for drug combination informed by longitudinal model for the response
19 schema:pagination 1-17
20 schema:productId N6a05abed568f448d80a0c1eb88977f65
21 N94f25c73a8f043c0838b0fb7a01965f9
22 Ncfbc49805ba6462b904da19cd9e86edf
23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111057350
24 https://doi.org/10.1007/s00362-018-01073-9
25 schema:sdDatePublished 2019-04-11T08:33
26 schema:sdLicense https://scigraph.springernature.com/explorer/license/
27 schema:sdPublisher Nefa26bc0dcf548e8ab2a5ad079f78413
28 schema:url https://link.springer.com/10.1007%2Fs00362-018-01073-9
29 sgo:license sg:explorer/license/
30 sgo:sdDataset articles
31 rdf:type schema:ScholarlyArticle
32 N6a05abed568f448d80a0c1eb88977f65 schema:name dimensions_id
33 schema:value pub.1111057350
34 rdf:type schema:PropertyValue
35 N7b08eee052df428b958a28d289a325ae rdf:first Nfadba2eb8bfb4f009e15b536bb5cba1c
36 rdf:rest rdf:nil
37 N83718cb65db94087aa4270466821d8a9 schema:affiliation https://www.grid.ac/institutes/grid.497524.9
38 schema:familyName Mielke
39 schema:givenName Tobias
40 rdf:type schema:Person
41 N94f25c73a8f043c0838b0fb7a01965f9 schema:name doi
42 schema:value 10.1007/s00362-018-01073-9
43 rdf:type schema:PropertyValue
44 Ncfbc49805ba6462b904da19cd9e86edf schema:name readcube_id
45 schema:value 8ece213d429da5b1afd8b2a929c1b899176f46c5de3b9c97c813acb5ac699085
46 rdf:type schema:PropertyValue
47 Nd290b8f2182c44c1a46e41e0d069db67 rdf:first N83718cb65db94087aa4270466821d8a9
48 rdf:rest N7b08eee052df428b958a28d289a325ae
49 Nefa26bc0dcf548e8ab2a5ad079f78413 schema:name Springer Nature - SN SciGraph project
50 rdf:type schema:Organization
51 Nfadba2eb8bfb4f009e15b536bb5cba1c schema:affiliation https://www.grid.ac/institutes/grid.497530.c
52 schema:familyName Dragalin
53 schema:givenName Vladimir
54 rdf:type schema:Person
55 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
56 schema:name Mathematical Sciences
57 rdf:type schema:DefinedTerm
58 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
59 schema:name Statistics
60 rdf:type schema:DefinedTerm
61 sg:journal.1051623 schema:issn 0932-5026
62 1613-9798
63 schema:name Statistical Papers
64 rdf:type schema:Periodical
65 sg:pub.10.1007/978-1-4614-6363-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010944819
66 https://doi.org/10.1007/978-1-4614-6363-4
67 rdf:type schema:CreativeWork
68 https://app.dimensions.ai/details/publication/pub.1010944819 schema:CreativeWork
69 https://app.dimensions.ai/details/publication/pub.1108475001 schema:CreativeWork
70 https://doi.org/10.1002/sim.6200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036108557
71 rdf:type schema:CreativeWork
72 https://doi.org/10.1016/j.jspi.2012.09.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046742181
73 rdf:type schema:CreativeWork
74 https://doi.org/10.1214/13-ba839 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004802920
75 rdf:type schema:CreativeWork
76 https://doi.org/10.4153/cjm-1960-030-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072264311
77 rdf:type schema:CreativeWork
78 https://www.grid.ac/institutes/grid.497524.9 schema:alternateName Janssen (Germany)
79 schema:name Janssen, Johnson & Johnson Platz 1, 41470, Neuss, Germany
80 rdf:type schema:Organization
81 https://www.grid.ac/institutes/grid.497530.c schema:alternateName Janssen (United States)
82 schema:name Janssen, 1400 McKean Rd, 19477, Spring House, PA, USA
83 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...