Towards a better understanding of the dual representation of phi divergences View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-07-26

AUTHORS

Diaa Al Mohamad

ABSTRACT

The aim of this paper is to study different estimation procedures based on φ-divergences. The dual representation of φ-divergences based on the Fenchel–Legendre duality provides a way to estimate φ-divergences by a simple plug-in of the empirical distribution without any smoothing technique. Resulting estimators are thoroughly studied theoretically and with simulations showing that the so called minimum φ-divergence estimator is generally non robust and behaves similarly to the maximum likelihood estimator. We give some arguments supporting the non robustness property, and give insights on how to modify the classical approach. An alternative class of robust estimators based on the dual representation of φ-divergences is introduced. We study consistency and robustness properties from an influence function point of view of the new estimator. In a second part, we invoke the Basu–Lindsay approach for approximating φ-divergences and provide a comparison between these approaches. The so called dual φ-divergence is also discussed and compared to our new estimator. A full simulation study of all these approaches is given in order to compare efficiency and robustness of all mentioned estimators against the so-called minimum density power divergence, showing encouraging results in favor of our new class of minimum dual φ-divergences. More... »

PAGES

1-49

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00362-016-0812-5

DOI

http://dx.doi.org/10.1007/s00362-016-0812-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1023274017


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0906", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Electrical and Electronic Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Laboratoire de Statistique Th\u00e9orique et Appliqu\u00e9e", 
          "id": "https://www.grid.ac/institutes/grid.463964.a", 
          "name": [
            "Laboratoire de Statistique Th\u00e9orique et Appliqu\u00e9e, 4 place Jussieu, 75005, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Al Mohamad", 
        "givenName": "Diaa", 
        "id": "sg:person.014435013515.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014435013515.38"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1080/00949659408811609", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003381961"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.stamet.2005.04.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007426523"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00773476", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012302470", 
          "https://doi.org/10.1007/bf00773476"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00773476", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012302470", 
          "https://doi.org/10.1007/bf00773476"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0266466605050218", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017918652"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmva.2012.10.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018371644"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmva.2008.03.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018973953"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.csda.2015.08.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020358505"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00362-015-0701-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021881058", 
          "https://doi.org/10.1007/s00362-015-0701-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.csda.2015.07.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023324736"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00362-010-0338-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026562838", 
          "https://doi.org/10.1007/s00362-010-0338-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.spl.2012.03.033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026788817"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmva.2009.11.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029498108"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.spl.2014.06.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030430451"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.spl.2014.08.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037320633"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jspi.2009.07.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037324580"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmva.2010.07.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040795136"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02595695", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041933813", 
          "https://doi.org/10.1007/bf02595695"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02595695", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041933813", 
          "https://doi.org/10.1007/bf02595695"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.3103/s1066530710010023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051825529", 
          "https://doi.org/10.3103/s1066530710010023"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.3103/s1066530710010023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051825529", 
          "https://doi.org/10.3103/s1066530710010023"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-87557-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053645848", 
          "https://doi.org/10.1007/978-3-540-87557-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-87557-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053645848", 
          "https://doi.org/10.1007/978-3-540-87557-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01621459.1986.10478264", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058303241"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01621459.1987.10478501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058303478"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/biomet/85.3.549", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059420860"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tit.2006.881731", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061651111"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aoms/1177697495", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064398995"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aos/1176325512", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064406713"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aos/1176343842", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064407289"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aos/1176344076", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064407382"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aos/1176348252", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064408562"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1556/sscmath.43.2006.4.2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067895367"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-07-26", 
    "datePublishedReg": "2016-07-26", 
    "description": "The aim of this paper is to study different estimation procedures based on \u03c6-divergences. The dual representation of \u03c6-divergences based on the Fenchel\u2013Legendre duality provides a way to estimate \u03c6-divergences by a simple plug-in of the empirical distribution without any smoothing technique. Resulting estimators are thoroughly studied theoretically and with simulations showing that the so called minimum \u03c6-divergence estimator is generally non robust and behaves similarly to the maximum likelihood estimator. We give some arguments supporting the non robustness property, and give insights on how to modify the classical approach. An alternative class of robust estimators based on the dual representation of \u03c6-divergences is introduced. We study consistency and robustness properties from an influence function point of view of the new estimator. In a second part, we invoke the Basu\u2013Lindsay approach for approximating \u03c6-divergences and provide a comparison between these approaches. The so called dual \u03c6-divergence is also discussed and compared to our new estimator. A full simulation study of all these approaches is given in order to compare efficiency and robustness of all mentioned estimators against the so-called minimum density power divergence, showing encouraging results in favor of our new class of minimum dual \u03c6-divergences.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00362-016-0812-5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1051623", 
        "issn": [
          "0932-5026", 
          "1613-9798"
        ], 
        "name": "Statistical Papers", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "59"
      }
    ], 
    "name": "Towards a better understanding of the dual representation of phi divergences", 
    "pagination": "1-49", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "6ee1f9d28c2f3f0f0fdca8e3ed065fd1dd84c5ba4ca2a122c65921664a378f99"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00362-016-0812-5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1023274017"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00362-016-0812-5", 
      "https://app.dimensions.ai/details/publication/pub.1023274017"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:36", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000363_0000000363/records_70031_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00362-016-0812-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00362-016-0812-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00362-016-0812-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00362-016-0812-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00362-016-0812-5'


 

This table displays all metadata directly associated to this object as RDF triples.

154 TRIPLES      21 PREDICATES      55 URIs      18 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00362-016-0812-5 schema:about anzsrc-for:09
2 anzsrc-for:0906
3 schema:author N80ff0f51313b4879bfcd0b2ed474c2b3
4 schema:citation sg:pub.10.1007/978-3-540-87557-4
5 sg:pub.10.1007/bf00773476
6 sg:pub.10.1007/bf02595695
7 sg:pub.10.1007/s00362-010-0338-1
8 sg:pub.10.1007/s00362-015-0701-3
9 sg:pub.10.3103/s1066530710010023
10 https://doi.org/10.1016/j.csda.2015.07.006
11 https://doi.org/10.1016/j.csda.2015.08.001
12 https://doi.org/10.1016/j.jmva.2008.03.011
13 https://doi.org/10.1016/j.jmva.2009.11.001
14 https://doi.org/10.1016/j.jmva.2010.07.010
15 https://doi.org/10.1016/j.jmva.2012.10.003
16 https://doi.org/10.1016/j.jspi.2009.07.013
17 https://doi.org/10.1016/j.spl.2012.03.033
18 https://doi.org/10.1016/j.spl.2014.06.014
19 https://doi.org/10.1016/j.spl.2014.08.020
20 https://doi.org/10.1016/j.stamet.2005.04.001
21 https://doi.org/10.1017/s0266466605050218
22 https://doi.org/10.1080/00949659408811609
23 https://doi.org/10.1080/01621459.1986.10478264
24 https://doi.org/10.1080/01621459.1987.10478501
25 https://doi.org/10.1093/biomet/85.3.549
26 https://doi.org/10.1109/tit.2006.881731
27 https://doi.org/10.1214/aoms/1177697495
28 https://doi.org/10.1214/aos/1176325512
29 https://doi.org/10.1214/aos/1176343842
30 https://doi.org/10.1214/aos/1176344076
31 https://doi.org/10.1214/aos/1176348252
32 https://doi.org/10.1556/sscmath.43.2006.4.2
33 schema:datePublished 2016-07-26
34 schema:datePublishedReg 2016-07-26
35 schema:description The aim of this paper is to study different estimation procedures based on φ-divergences. The dual representation of φ-divergences based on the Fenchel–Legendre duality provides a way to estimate φ-divergences by a simple plug-in of the empirical distribution without any smoothing technique. Resulting estimators are thoroughly studied theoretically and with simulations showing that the so called minimum φ-divergence estimator is generally non robust and behaves similarly to the maximum likelihood estimator. We give some arguments supporting the non robustness property, and give insights on how to modify the classical approach. An alternative class of robust estimators based on the dual representation of φ-divergences is introduced. We study consistency and robustness properties from an influence function point of view of the new estimator. In a second part, we invoke the Basu–Lindsay approach for approximating φ-divergences and provide a comparison between these approaches. The so called dual φ-divergence is also discussed and compared to our new estimator. A full simulation study of all these approaches is given in order to compare efficiency and robustness of all mentioned estimators against the so-called minimum density power divergence, showing encouraging results in favor of our new class of minimum dual φ-divergences.
36 schema:genre research_article
37 schema:inLanguage en
38 schema:isAccessibleForFree false
39 schema:isPartOf N5ced484fbe1444249c2dfa7bc5ecb620
40 Na651fd3fc0b141569be6d4006c4deeb6
41 sg:journal.1051623
42 schema:name Towards a better understanding of the dual representation of phi divergences
43 schema:pagination 1-49
44 schema:productId N1d8b242bc289403da1eaedcc830fbb4c
45 N570270a1a740402fb46ded62cb816e7f
46 Nb681658b312d45109709370479e8bd3a
47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023274017
48 https://doi.org/10.1007/s00362-016-0812-5
49 schema:sdDatePublished 2019-04-11T12:36
50 schema:sdLicense https://scigraph.springernature.com/explorer/license/
51 schema:sdPublisher Nc67a5933e1474ba6b6fda5944c4d1dc3
52 schema:url https://link.springer.com/10.1007%2Fs00362-016-0812-5
53 sgo:license sg:explorer/license/
54 sgo:sdDataset articles
55 rdf:type schema:ScholarlyArticle
56 N1d8b242bc289403da1eaedcc830fbb4c schema:name readcube_id
57 schema:value 6ee1f9d28c2f3f0f0fdca8e3ed065fd1dd84c5ba4ca2a122c65921664a378f99
58 rdf:type schema:PropertyValue
59 N570270a1a740402fb46ded62cb816e7f schema:name doi
60 schema:value 10.1007/s00362-016-0812-5
61 rdf:type schema:PropertyValue
62 N5ced484fbe1444249c2dfa7bc5ecb620 schema:issueNumber 3
63 rdf:type schema:PublicationIssue
64 N80ff0f51313b4879bfcd0b2ed474c2b3 rdf:first sg:person.014435013515.38
65 rdf:rest rdf:nil
66 Na651fd3fc0b141569be6d4006c4deeb6 schema:volumeNumber 59
67 rdf:type schema:PublicationVolume
68 Nb681658b312d45109709370479e8bd3a schema:name dimensions_id
69 schema:value pub.1023274017
70 rdf:type schema:PropertyValue
71 Nc67a5933e1474ba6b6fda5944c4d1dc3 schema:name Springer Nature - SN SciGraph project
72 rdf:type schema:Organization
73 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
74 schema:name Engineering
75 rdf:type schema:DefinedTerm
76 anzsrc-for:0906 schema:inDefinedTermSet anzsrc-for:
77 schema:name Electrical and Electronic Engineering
78 rdf:type schema:DefinedTerm
79 sg:journal.1051623 schema:issn 0932-5026
80 1613-9798
81 schema:name Statistical Papers
82 rdf:type schema:Periodical
83 sg:person.014435013515.38 schema:affiliation https://www.grid.ac/institutes/grid.463964.a
84 schema:familyName Al Mohamad
85 schema:givenName Diaa
86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014435013515.38
87 rdf:type schema:Person
88 sg:pub.10.1007/978-3-540-87557-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053645848
89 https://doi.org/10.1007/978-3-540-87557-4
90 rdf:type schema:CreativeWork
91 sg:pub.10.1007/bf00773476 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012302470
92 https://doi.org/10.1007/bf00773476
93 rdf:type schema:CreativeWork
94 sg:pub.10.1007/bf02595695 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041933813
95 https://doi.org/10.1007/bf02595695
96 rdf:type schema:CreativeWork
97 sg:pub.10.1007/s00362-010-0338-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026562838
98 https://doi.org/10.1007/s00362-010-0338-1
99 rdf:type schema:CreativeWork
100 sg:pub.10.1007/s00362-015-0701-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021881058
101 https://doi.org/10.1007/s00362-015-0701-3
102 rdf:type schema:CreativeWork
103 sg:pub.10.3103/s1066530710010023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051825529
104 https://doi.org/10.3103/s1066530710010023
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1016/j.csda.2015.07.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023324736
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1016/j.csda.2015.08.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020358505
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1016/j.jmva.2008.03.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018973953
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1016/j.jmva.2009.11.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029498108
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1016/j.jmva.2010.07.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040795136
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1016/j.jmva.2012.10.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018371644
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1016/j.jspi.2009.07.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037324580
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1016/j.spl.2012.03.033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026788817
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1016/j.spl.2014.06.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030430451
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1016/j.spl.2014.08.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037320633
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1016/j.stamet.2005.04.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007426523
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1017/s0266466605050218 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017918652
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1080/00949659408811609 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003381961
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1080/01621459.1986.10478264 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058303241
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1080/01621459.1987.10478501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058303478
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1093/biomet/85.3.549 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059420860
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1109/tit.2006.881731 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061651111
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1214/aoms/1177697495 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064398995
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1214/aos/1176325512 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064406713
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1214/aos/1176343842 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064407289
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1214/aos/1176344076 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064407382
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1214/aos/1176348252 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064408562
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1556/sscmath.43.2006.4.2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067895367
151 rdf:type schema:CreativeWork
152 https://www.grid.ac/institutes/grid.463964.a schema:alternateName Laboratoire de Statistique Théorique et Appliquée
153 schema:name Laboratoire de Statistique Théorique et Appliquée, 4 place Jussieu, 75005, Paris, France
154 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...