Ontology type: schema:ScholarlyArticle
2008-07-01
AUTHORSFabrizio Durante, Erich Peter Klement, Carlo Sempi, Manuel Úbeda-Flores
ABSTRACTWe introduce a set of axioms for measures of non-exchangeability for bivariate vectors of continuous and identically distributed random variables and give some examples together with possible applications in statistical models based on the copula function.
PAGES687-699
http://scigraph.springernature.com/pub.10.1007/s00362-008-0153-0
DOIhttp://dx.doi.org/10.1007/s00362-008-0153-0
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1007983374
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Statistics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Department of Knowledge-Based Mathematical Systems, Johannes Kepler University, 4040, Linz, Austria",
"id": "http://www.grid.ac/institutes/grid.9970.7",
"name": [
"Department of Knowledge-Based Mathematical Systems, Johannes Kepler University, 4040, Linz, Austria"
],
"type": "Organization"
},
"familyName": "Durante",
"givenName": "Fabrizio",
"id": "sg:person.013475607471.22",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013475607471.22"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Knowledge-Based Mathematical Systems, Johannes Kepler University, 4040, Linz, Austria",
"id": "http://www.grid.ac/institutes/grid.9970.7",
"name": [
"Department of Knowledge-Based Mathematical Systems, Johannes Kepler University, 4040, Linz, Austria"
],
"type": "Organization"
},
"familyName": "Klement",
"givenName": "Erich Peter",
"id": "sg:person.010620407107.52",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010620407107.52"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Dipartimento di Matematica \u201cEnnio De Giorgi\u201d, Universit\u00e0 del Salento, 73100, Lecce, Italy",
"id": "http://www.grid.ac/institutes/grid.9906.6",
"name": [
"Dipartimento di Matematica \u201cEnnio De Giorgi\u201d, Universit\u00e0 del Salento, 73100, Lecce, Italy"
],
"type": "Organization"
},
"familyName": "Sempi",
"givenName": "Carlo",
"id": "sg:person.07603035605.17",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07603035605.17"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Departamento de Estad\u00edstica y Matem\u00e1tica Aplicada, Universidad de Almer\u00eda, 04120, Almer\u00eda, Spain",
"id": "http://www.grid.ac/institutes/grid.28020.38",
"name": [
"Departamento de Estad\u00edstica y Matem\u00e1tica Aplicada, Universidad de Almer\u00eda, 04120, Almer\u00eda, Spain"
],
"type": "Organization"
},
"familyName": "\u00dabeda-Flores",
"givenName": "Manuel",
"id": "sg:person.015633760405.50",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015633760405.50"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/s00362-007-0064-5",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1033688758",
"https://doi.org/10.1007/s00362-007-0064-5"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf02024507",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1028793573",
"https://doi.org/10.1007/bf02024507"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/1-4020-4415-1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1002759975",
"https://doi.org/10.1007/1-4020-4415-1"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00362-006-0336-5",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1025977347",
"https://doi.org/10.1007/s00362-006-0336-5"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-1-4684-0062-5",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1040082019",
"https://doi.org/10.1007/978-1-4684-0062-5"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-94-011-5532-8_15",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1021658869",
"https://doi.org/10.1007/978-94-011-5532-8_15"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-94-017-0061-0_10",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1044820219",
"https://doi.org/10.1007/978-94-017-0061-0_10"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10687-006-0015-x",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1015256266",
"https://doi.org/10.1007/s10687-006-0015-x"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00010-003-2673-y",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1053437886",
"https://doi.org/10.1007/s00010-003-2673-y"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-94-011-5532-8_16",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1017813050",
"https://doi.org/10.1007/978-94-011-5532-8_16"
],
"type": "CreativeWork"
}
],
"datePublished": "2008-07-01",
"datePublishedReg": "2008-07-01",
"description": "We introduce a set of axioms for measures of non-exchangeability for bivariate vectors of continuous and identically distributed random variables and give some examples together with possible applications in statistical models based on the copula function.",
"genre": "article",
"id": "sg:pub.10.1007/s00362-008-0153-0",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1051623",
"issn": [
"0932-5026",
"1613-9798"
],
"name": "Statistical Papers",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "3",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "51"
}
],
"keywords": [
"bivariate random vectors",
"random variables",
"random vectors",
"statistical model",
"copula function",
"set of axioms",
"bivariate vector",
"possible applications",
"vector",
"axioms",
"set",
"model",
"variables",
"applications",
"function",
"measures",
"example"
],
"name": "Measures of non-exchangeability for bivariate random vectors",
"pagination": "687-699",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1007983374"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s00362-008-0153-0"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s00362-008-0153-0",
"https://app.dimensions.ai/details/publication/pub.1007983374"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-20T07:24",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_471.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s00362-008-0153-0"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00362-008-0153-0'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00362-008-0153-0'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00362-008-0153-0'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00362-008-0153-0'
This table displays all metadata directly associated to this object as RDF triples.
142 TRIPLES
22 PREDICATES
52 URIs
34 LITERALS
6 BLANK NODES