Vasotocin has the potential to inhibit basolateral Na+/K+-pump current across isolated skin of tree frog in vitro, via its V2-type ... View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2008-06-07

AUTHORS

Makoto Takada, Kayo Fujimaki, Shigeru Hokari

ABSTRACT

Adult frog skin transports Na+ from the apical to the basolateral side across the skin. Antidiuretic hormone (ADH) is involved in the regulation of Na+ transport in both mammals and amphibians. We investigated the effect of arginine vasotocin (AVT), the ADH of amphibians, on the short-circuit current (SCC) across intact skin and on the basolateral Na+/K+-pump current across apically nystatin-permeabilized skin of the tree frog, Hyla japonica, in which the V2-type ADH receptor is expressed in vitro. In intact skin, 1 pM AVT had no effect on the SCC, but 10 nM AVT was sufficient to stimulate the SCC since 10 nM and 1 μM of AVT increased the SCC 3.2- and 3.4-fold, respectively (P > 0.9). However, in permeabilized skin, AVT (1 μM) decreased the Na+/K+-pump current to 0.79 times vehicle control. Similarly, 500 μM of 8Br-cAMP increased the SCC 3.2-fold, yet 1 mM of 8Br-cAMP decreased the Na+/K+-pump current to 0.76 times vehicle control. Arachidonic acid (10−5 M) tended to decrease the Na+/K+-pump current. To judge from these in vitro experiments, AVT has the potential to inhibit the basolateral Na+/K+-pump current via the V2-type receptor/cAMP pathway in the skin of the tree frog. More... »

PAGES

957

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00360-008-0278-4

DOI

http://dx.doi.org/10.1007/s00360-008-0278-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1047771183

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/18536923


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0606", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physiology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0608", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Zoology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "8-Bromo Cyclic Adenosine Monophosphate", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Anura", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Arachidonic Acid", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cyclic AMP", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Ionophores", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Membrane Potentials", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Nystatin", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Permeability", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Receptors, Vasopressin", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Skin", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sodium-Potassium-Exchanging ATPase", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Time Factors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Vasotocin", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Physiology, School of Medicine, Saitama Medical University, Moroyama, 350-0495, Iruma-gun, Saitama, Japan", 
          "id": "http://www.grid.ac/institutes/grid.410802.f", 
          "name": [
            "Department of Physiology, School of Medicine, Saitama Medical University, Moroyama, 350-0495, Iruma-gun, Saitama, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Takada", 
        "givenName": "Makoto", 
        "id": "sg:person.01020263612.64", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01020263612.64"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Physiology, School of Medicine, Saitama Medical University, Moroyama, 350-0495, Iruma-gun, Saitama, Japan", 
          "id": "http://www.grid.ac/institutes/grid.410802.f", 
          "name": [
            "Department of Physiology, School of Medicine, Saitama Medical University, Moroyama, 350-0495, Iruma-gun, Saitama, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fujimaki", 
        "givenName": "Kayo", 
        "id": "sg:person.01002266004.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01002266004.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Biochemistry, School of Medicine, Saitama Medical University, Moroyama, 350-0495, Iruma-gun, Saitama, Japan", 
          "id": "http://www.grid.ac/institutes/grid.410802.f", 
          "name": [
            "Department of Biochemistry, School of Medicine, Saitama Medical University, Moroyama, 350-0495, Iruma-gun, Saitama, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hokari", 
        "givenName": "Shigeru", 
        "id": "sg:person.0724272107.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0724272107.82"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s002329900269", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004291615", 
          "https://doi.org/10.1007/s002329900269"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00424-004-1371-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035024286", 
          "https://doi.org/10.1007/s00424-004-1371-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00233310", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027388311", 
          "https://doi.org/10.1007/bf00233310"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s002329900126", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012337376", 
          "https://doi.org/10.1007/s002329900126"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2008-06-07", 
    "datePublishedReg": "2008-06-07", 
    "description": "Adult frog skin transports Na+ from the apical to the basolateral side across the skin. Antidiuretic hormone (ADH) is involved in the regulation of Na+ transport in both mammals and amphibians. We investigated the effect of arginine vasotocin (AVT), the ADH of amphibians, on the short-circuit current (SCC) across intact skin and on the basolateral Na+/K+-pump current across apically nystatin-permeabilized skin of the tree frog, Hyla japonica, in which the V2-type ADH receptor is expressed in vitro. In intact skin, 1\u00a0pM AVT had no effect on the SCC, but 10\u00a0nM AVT was sufficient to stimulate the SCC since 10\u00a0nM and 1\u00a0\u03bcM of AVT increased the SCC 3.2- and 3.4-fold, respectively (P\u00a0>\u00a00.9). However, in permeabilized skin, AVT (1\u00a0\u03bcM) decreased the Na+/K+-pump current to 0.79 times vehicle control. Similarly, 500\u00a0\u03bcM of 8Br-cAMP increased the SCC 3.2-fold, yet 1\u00a0mM of 8Br-cAMP decreased the Na+/K+-pump current to 0.76 times vehicle control. Arachidonic acid (10\u22125\u00a0M) tended to decrease the Na+/K+-pump current. To judge from these in vitro experiments, AVT has the potential to inhibit the basolateral Na+/K+-pump current via the V2-type receptor/cAMP pathway in the skin of the tree frog.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00360-008-0278-4", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1312193", 
        "issn": [
          "0174-1578", 
          "1432-136X"
        ], 
        "name": "Journal of Comparative Physiology B", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "8", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "178"
      }
    ], 
    "keywords": [
      "antidiuretic hormone", 
      "arginine vasotocin", 
      "intact skin", 
      "vehicle control", 
      "ADH receptors", 
      "V2-type receptor", 
      "adult frog skin", 
      "arachidonic acid", 
      "basolateral side", 
      "skin", 
      "isolated skin", 
      "receptors", 
      "cAMP pathway", 
      "frog skin", 
      "vasotocin", 
      "short-circuit current", 
      "permeabilized skin", 
      "hormone", 
      "control", 
      "vitro", 
      "effect", 
      "pump", 
      "pathway", 
      "nM", 
      "cAMP", 
      "frogs", 
      "regulation", 
      "potential", 
      "\u03bcM", 
      "acid", 
      "mammals", 
      "Hyla japonica", 
      "side", 
      "amphibians", 
      "tree frog", 
      "japonica", 
      "transport", 
      "experiments", 
      "current", 
      "ADH of amphibians", 
      "nystatin-permeabilized skin", 
      "V2-type ADH receptor", 
      "pM AVT", 
      "nM AVT", 
      "SCC 3.2", 
      "times vehicle control"
    ], 
    "name": "Vasotocin has the potential to inhibit basolateral Na+/K+-pump current across isolated skin of tree frog in vitro, via its V2-type receptor/cAMP pathway", 
    "pagination": "957", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1047771183"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00360-008-0278-4"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "18536923"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00360-008-0278-4", 
      "https://app.dimensions.ai/details/publication/pub.1047771183"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:17", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_455.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00360-008-0278-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00360-008-0278-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00360-008-0278-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00360-008-0278-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00360-008-0278-4'


 

This table displays all metadata directly associated to this object as RDF triples.

204 TRIPLES      22 PREDICATES      92 URIs      78 LITERALS      21 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00360-008-0278-4 schema:about N3057407244a0490995190ce7baffd241
2 N63205a9896e74004b830e49e1ab3da77
3 N74fdf3924e8343ee9fde1bbd529aacdd
4 N80696ef7380b4d70a4debd5bb82f9d22
5 N84132ce7729c487ba2314dd4b7b96899
6 N874a0bfc77d948ffa9976a8d9660a3ad
7 N8c7a9a84d8a64d9886fb2e86e358933f
8 Nc3af63b28a434d58b8671c0c6c03f939
9 Nc49e654cfe3641c781c2d508b7efce0f
10 Nc59f155ceea1434da6ecb7cb27c4f791
11 Nc93e7e34a058481d8194e9a68ca8d3b9
12 Ncb8d1f6b79dc445dbe8481276b93beba
13 Nf9293eed69124bffb27030811108aff1
14 Nfcd5c4049fd34d9aa10a57c675019938
15 anzsrc-for:06
16 anzsrc-for:0601
17 anzsrc-for:0606
18 anzsrc-for:0608
19 schema:author N94660153637745b79e8dd82216f4f54e
20 schema:citation sg:pub.10.1007/bf00233310
21 sg:pub.10.1007/s002329900126
22 sg:pub.10.1007/s002329900269
23 sg:pub.10.1007/s00424-004-1371-5
24 schema:datePublished 2008-06-07
25 schema:datePublishedReg 2008-06-07
26 schema:description Adult frog skin transports Na+ from the apical to the basolateral side across the skin. Antidiuretic hormone (ADH) is involved in the regulation of Na+ transport in both mammals and amphibians. We investigated the effect of arginine vasotocin (AVT), the ADH of amphibians, on the short-circuit current (SCC) across intact skin and on the basolateral Na+/K+-pump current across apically nystatin-permeabilized skin of the tree frog, Hyla japonica, in which the V2-type ADH receptor is expressed in vitro. In intact skin, 1 pM AVT had no effect on the SCC, but 10 nM AVT was sufficient to stimulate the SCC since 10 nM and 1 μM of AVT increased the SCC 3.2- and 3.4-fold, respectively (P > 0.9). However, in permeabilized skin, AVT (1 μM) decreased the Na+/K+-pump current to 0.79 times vehicle control. Similarly, 500 μM of 8Br-cAMP increased the SCC 3.2-fold, yet 1 mM of 8Br-cAMP decreased the Na+/K+-pump current to 0.76 times vehicle control. Arachidonic acid (10−5 M) tended to decrease the Na+/K+-pump current. To judge from these in vitro experiments, AVT has the potential to inhibit the basolateral Na+/K+-pump current via the V2-type receptor/cAMP pathway in the skin of the tree frog.
27 schema:genre article
28 schema:inLanguage en
29 schema:isAccessibleForFree false
30 schema:isPartOf Nb78742906f354272bdd3c101f4ee845b
31 Nbe0b5f68ef83470caffbf94314102770
32 sg:journal.1312193
33 schema:keywords ADH of amphibians
34 ADH receptors
35 Hyla japonica
36 SCC 3.2
37 V2-type ADH receptor
38 V2-type receptor
39 acid
40 adult frog skin
41 amphibians
42 antidiuretic hormone
43 arachidonic acid
44 arginine vasotocin
45 basolateral side
46 cAMP
47 cAMP pathway
48 control
49 current
50 effect
51 experiments
52 frog skin
53 frogs
54 hormone
55 intact skin
56 isolated skin
57 japonica
58 mammals
59 nM
60 nM AVT
61 nystatin-permeabilized skin
62 pM AVT
63 pathway
64 permeabilized skin
65 potential
66 pump
67 receptors
68 regulation
69 short-circuit current
70 side
71 skin
72 times vehicle control
73 transport
74 tree frog
75 vasotocin
76 vehicle control
77 vitro
78 μM
79 schema:name Vasotocin has the potential to inhibit basolateral Na+/K+-pump current across isolated skin of tree frog in vitro, via its V2-type receptor/cAMP pathway
80 schema:pagination 957
81 schema:productId N416249d997e94a808e266dfd1c6e0e7c
82 N4a7a076c0a1f426baffc591cbf503fdb
83 N5ad594e5cee54dfea320eb00eda35069
84 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047771183
85 https://doi.org/10.1007/s00360-008-0278-4
86 schema:sdDatePublished 2022-01-01T18:17
87 schema:sdLicense https://scigraph.springernature.com/explorer/license/
88 schema:sdPublisher N4b41107f09704aeead786bd01424218f
89 schema:url https://doi.org/10.1007/s00360-008-0278-4
90 sgo:license sg:explorer/license/
91 sgo:sdDataset articles
92 rdf:type schema:ScholarlyArticle
93 N3057407244a0490995190ce7baffd241 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
94 schema:name Receptors, Vasopressin
95 rdf:type schema:DefinedTerm
96 N416249d997e94a808e266dfd1c6e0e7c schema:name dimensions_id
97 schema:value pub.1047771183
98 rdf:type schema:PropertyValue
99 N4a7a076c0a1f426baffc591cbf503fdb schema:name pubmed_id
100 schema:value 18536923
101 rdf:type schema:PropertyValue
102 N4b41107f09704aeead786bd01424218f schema:name Springer Nature - SN SciGraph project
103 rdf:type schema:Organization
104 N5ad594e5cee54dfea320eb00eda35069 schema:name doi
105 schema:value 10.1007/s00360-008-0278-4
106 rdf:type schema:PropertyValue
107 N63205a9896e74004b830e49e1ab3da77 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name Ionophores
109 rdf:type schema:DefinedTerm
110 N6cb23b663fa2435d99f5e0ceabc8f5a2 rdf:first sg:person.0724272107.82
111 rdf:rest rdf:nil
112 N74fdf3924e8343ee9fde1bbd529aacdd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
113 schema:name Anura
114 rdf:type schema:DefinedTerm
115 N80696ef7380b4d70a4debd5bb82f9d22 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name Time Factors
117 rdf:type schema:DefinedTerm
118 N84132ce7729c487ba2314dd4b7b96899 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Nystatin
120 rdf:type schema:DefinedTerm
121 N874a0bfc77d948ffa9976a8d9660a3ad schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
122 schema:name Skin
123 rdf:type schema:DefinedTerm
124 N8c7a9a84d8a64d9886fb2e86e358933f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
125 schema:name Arachidonic Acid
126 rdf:type schema:DefinedTerm
127 N94660153637745b79e8dd82216f4f54e rdf:first sg:person.01020263612.64
128 rdf:rest Ndb17919cfafd4427a7a59be12a419c6a
129 Nb78742906f354272bdd3c101f4ee845b schema:issueNumber 8
130 rdf:type schema:PublicationIssue
131 Nbe0b5f68ef83470caffbf94314102770 schema:volumeNumber 178
132 rdf:type schema:PublicationVolume
133 Nc3af63b28a434d58b8671c0c6c03f939 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
134 schema:name Vasotocin
135 rdf:type schema:DefinedTerm
136 Nc49e654cfe3641c781c2d508b7efce0f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
137 schema:name Permeability
138 rdf:type schema:DefinedTerm
139 Nc59f155ceea1434da6ecb7cb27c4f791 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
140 schema:name Membrane Potentials
141 rdf:type schema:DefinedTerm
142 Nc93e7e34a058481d8194e9a68ca8d3b9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
143 schema:name Sodium-Potassium-Exchanging ATPase
144 rdf:type schema:DefinedTerm
145 Ncb8d1f6b79dc445dbe8481276b93beba schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
146 schema:name Cyclic AMP
147 rdf:type schema:DefinedTerm
148 Ndb17919cfafd4427a7a59be12a419c6a rdf:first sg:person.01002266004.52
149 rdf:rest N6cb23b663fa2435d99f5e0ceabc8f5a2
150 Nf9293eed69124bffb27030811108aff1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
151 schema:name Animals
152 rdf:type schema:DefinedTerm
153 Nfcd5c4049fd34d9aa10a57c675019938 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
154 schema:name 8-Bromo Cyclic Adenosine Monophosphate
155 rdf:type schema:DefinedTerm
156 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
157 schema:name Biological Sciences
158 rdf:type schema:DefinedTerm
159 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
160 schema:name Biochemistry and Cell Biology
161 rdf:type schema:DefinedTerm
162 anzsrc-for:0606 schema:inDefinedTermSet anzsrc-for:
163 schema:name Physiology
164 rdf:type schema:DefinedTerm
165 anzsrc-for:0608 schema:inDefinedTermSet anzsrc-for:
166 schema:name Zoology
167 rdf:type schema:DefinedTerm
168 sg:journal.1312193 schema:issn 0174-1578
169 1432-136X
170 schema:name Journal of Comparative Physiology B
171 schema:publisher Springer Nature
172 rdf:type schema:Periodical
173 sg:person.01002266004.52 schema:affiliation grid-institutes:grid.410802.f
174 schema:familyName Fujimaki
175 schema:givenName Kayo
176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01002266004.52
177 rdf:type schema:Person
178 sg:person.01020263612.64 schema:affiliation grid-institutes:grid.410802.f
179 schema:familyName Takada
180 schema:givenName Makoto
181 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01020263612.64
182 rdf:type schema:Person
183 sg:person.0724272107.82 schema:affiliation grid-institutes:grid.410802.f
184 schema:familyName Hokari
185 schema:givenName Shigeru
186 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0724272107.82
187 rdf:type schema:Person
188 sg:pub.10.1007/bf00233310 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027388311
189 https://doi.org/10.1007/bf00233310
190 rdf:type schema:CreativeWork
191 sg:pub.10.1007/s002329900126 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012337376
192 https://doi.org/10.1007/s002329900126
193 rdf:type schema:CreativeWork
194 sg:pub.10.1007/s002329900269 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004291615
195 https://doi.org/10.1007/s002329900269
196 rdf:type schema:CreativeWork
197 sg:pub.10.1007/s00424-004-1371-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035024286
198 https://doi.org/10.1007/s00424-004-1371-5
199 rdf:type schema:CreativeWork
200 grid-institutes:grid.410802.f schema:alternateName Department of Biochemistry, School of Medicine, Saitama Medical University, Moroyama, 350-0495, Iruma-gun, Saitama, Japan
201 Department of Physiology, School of Medicine, Saitama Medical University, Moroyama, 350-0495, Iruma-gun, Saitama, Japan
202 schema:name Department of Biochemistry, School of Medicine, Saitama Medical University, Moroyama, 350-0495, Iruma-gun, Saitama, Japan
203 Department of Physiology, School of Medicine, Saitama Medical University, Moroyama, 350-0495, Iruma-gun, Saitama, Japan
204 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...