Binary Whale Optimization Algorithm and Binary Moth Flame Optimization with Clustering Algorithms for Clinical Breast Cancer Diagnoses View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03-29

AUTHORS

Gehad Ismail Sayed, Ashraf Darwish, Aboul Ella Hassanien

ABSTRACT

Models based on machine learning algorithms have been developed to detect the breast cancer disease early. Feature selection is commonly applied to improve the performance of these models through selecting only relevant features. However, selecting relevant features in unsupervised learning is much difficult. This is due to the absence of class labels that guide the search for relevant information. This kind of the problem has rarely been studied in the literature. This paper presents a hybrid intelligence model that uses the cluster analysis algorithms with bio-inspired algorithms as feature selection for analyzing clinical breast cancer data. A binary version of both moth flame optimization and whale optimization algorithm is proposed. Two evaluation criteria are adopted to evaluate the proposed algorithms: clustering-based measurements and statistics-based measurements. The experimental results positively demonstrate that the capability of the proposed bio-inspired feature selection algorithms to produce both meaningful data partitions and significant feature subsets. More... »

PAGES

1-31

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00357-018-9297-3

DOI

http://dx.doi.org/10.1007/s00357-018-9297-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1113108797


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Cairo University", 
          "id": "https://www.grid.ac/institutes/grid.7776.1", 
          "name": [
            "Faculty of Computers and Information, Cairo University, Egypt Scientific Research Group in Egypt (SRGE), Cairo, Egypt"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sayed", 
        "givenName": "Gehad Ismail", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Helwan University", 
          "id": "https://www.grid.ac/institutes/grid.412093.d", 
          "name": [
            "Faculty of Science, Helwan University Scientific Research Group in Egypt (SRGE), Cairo, Egypt"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Darwish", 
        "givenName": "Ashraf", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cairo University", 
          "id": "https://www.grid.ac/institutes/grid.7776.1", 
          "name": [
            "Faculty of Computers and Information, Cairo University, Egypt Scientific Research Group in Egypt (SRGE), Cairo, Egypt"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hassanien", 
        "givenName": "Aboul Ella", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.patrec.2016.03.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002969482"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ar.20407", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006364647"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00500-008-0303-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007348038", 
          "https://doi.org/10.1007/s00500-008-0303-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00500-008-0303-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007348038", 
          "https://doi.org/10.1007/s00500-008-0303-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00337288", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009635558", 
          "https://doi.org/10.1007/bf00337288"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00357-007-0003-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014089582", 
          "https://doi.org/10.1007/s00357-007-0003-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1136800", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017347292"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1012801612483", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018051122", 
          "https://doi.org/10.1023/a:1012801612483"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/0094965031000136012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023037358"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-32894-7_27", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023291595", 
          "https://doi.org/10.1007/978-3-642-32894-7_27"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ins.2013.02.041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028706101"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11336-007-9019-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029616509", 
          "https://doi.org/10.1007/s11336-007-9019-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2015/460189", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033372642"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.knosys.2015.07.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034277407"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcp.2007.06.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034411032"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2015.06.083", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034628147"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.advengsoft.2013.12.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036158139"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.asoc.2016.04.034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036450304"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.asoc.2013.10.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036714548"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1525/bio.2013.63.2.5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039906785"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2481/dsj.007-020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040423452"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2011.01.167", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047514835"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01969727308546046", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050066984"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2013.08.044", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051874913"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.advengsoft.2016.01.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053442576"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tevc.2005.843751", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061604666"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1379766", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069460514"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3906/elk-1203-119", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071567586"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/23311916.2017.1286731", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083779127"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10489-017-0897-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084024861", 
          "https://doi.org/10.1007/s10489-017-0897-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10489-017-0897-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084024861", 
          "https://doi.org/10.1007/s10489-017-0897-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-33793-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084930587", 
          "https://doi.org/10.1007/978-3-319-33793-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00521-017-2988-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085056925", 
          "https://doi.org/10.1007/s00521-017-2988-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2017.04.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085208897"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00202-017-0539-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085433859", 
          "https://doi.org/10.1007/s00202-017-0539-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00202-017-0539-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085433859", 
          "https://doi.org/10.1007/s00202-017-0539-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ecolind.2017.06.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085996424"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00521-017-3228-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092482297", 
          "https://doi.org/10.1007/s00521-017-3228-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icnn.1995.488968", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093669333"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icdm.2010.35", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094710123"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cec.2008.4630938", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095199421"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/ecai.2017.8166465", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099624241"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7897/2230-8407.0811242", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099884198"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2346830", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101982469"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2346830", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101982469"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/3001968", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1102728208"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3233/ida-2007-11402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107709301"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03-29", 
    "datePublishedReg": "2019-03-29", 
    "description": "Models based on machine learning algorithms have been developed to detect the breast cancer disease early. Feature selection is commonly applied to improve the performance of these models through selecting only relevant features. However, selecting relevant features in unsupervised learning is much difficult. This is due to the absence of class labels that guide the search for relevant information. This kind of the problem has rarely been studied in the literature. This paper presents a hybrid intelligence model that uses the cluster analysis algorithms with bio-inspired algorithms as feature selection for analyzing clinical breast cancer data. A binary version of both moth flame optimization and whale optimization algorithm is proposed. Two evaluation criteria are adopted to evaluate the proposed algorithms: clustering-based measurements and statistics-based measurements. The experimental results positively demonstrate that the capability of the proposed bio-inspired feature selection algorithms to produce both meaningful data partitions and significant feature subsets.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00357-018-9297-3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1126672", 
        "issn": [
          "0176-4268", 
          "1432-1343"
        ], 
        "name": "Journal of Classification", 
        "type": "Periodical"
      }
    ], 
    "name": "Binary Whale Optimization Algorithm and Binary Moth Flame Optimization with Clustering Algorithms for Clinical Breast Cancer Diagnoses", 
    "pagination": "1-31", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "a3478df81171328ff2ad8477d074d4f22bd446f9ad9acb18bcaa0688946aa613"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00357-018-9297-3"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1113108797"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00357-018-9297-3", 
      "https://app.dimensions.ai/details/publication/pub.1113108797"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:24", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000369_0000000369/records_68969_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00357-018-9297-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00357-018-9297-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00357-018-9297-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00357-018-9297-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00357-018-9297-3'


 

This table displays all metadata directly associated to this object as RDF triples.

209 TRIPLES      21 PREDICATES      67 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00357-018-9297-3 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Ndc148358e4a54aa192abd186d0e4f409
4 schema:citation sg:pub.10.1007/978-3-319-33793-7
5 sg:pub.10.1007/978-3-642-32894-7_27
6 sg:pub.10.1007/bf00337288
7 sg:pub.10.1007/s00202-017-0539-x
8 sg:pub.10.1007/s00357-007-0003-0
9 sg:pub.10.1007/s00500-008-0303-2
10 sg:pub.10.1007/s00521-017-2988-6
11 sg:pub.10.1007/s00521-017-3228-9
12 sg:pub.10.1007/s10489-017-0897-0
13 sg:pub.10.1007/s11336-007-9019-y
14 sg:pub.10.1023/a:1012801612483
15 https://doi.org/10.1002/ar.20407
16 https://doi.org/10.1016/j.advengsoft.2013.12.007
17 https://doi.org/10.1016/j.advengsoft.2016.01.008
18 https://doi.org/10.1016/j.asoc.2013.10.024
19 https://doi.org/10.1016/j.asoc.2016.04.034
20 https://doi.org/10.1016/j.ecolind.2017.06.009
21 https://doi.org/10.1016/j.eswa.2011.01.167
22 https://doi.org/10.1016/j.eswa.2013.08.044
23 https://doi.org/10.1016/j.eswa.2017.04.023
24 https://doi.org/10.1016/j.ins.2013.02.041
25 https://doi.org/10.1016/j.jcp.2007.06.008
26 https://doi.org/10.1016/j.knosys.2015.07.006
27 https://doi.org/10.1016/j.neucom.2015.06.083
28 https://doi.org/10.1016/j.patrec.2016.03.014
29 https://doi.org/10.1080/0094965031000136012
30 https://doi.org/10.1080/01969727308546046
31 https://doi.org/10.1080/23311916.2017.1286731
32 https://doi.org/10.1109/cec.2008.4630938
33 https://doi.org/10.1109/ecai.2017.8166465
34 https://doi.org/10.1109/icdm.2010.35
35 https://doi.org/10.1109/icnn.1995.488968
36 https://doi.org/10.1109/tevc.2005.843751
37 https://doi.org/10.1126/science.1136800
38 https://doi.org/10.1155/2015/460189
39 https://doi.org/10.1525/bio.2013.63.2.5
40 https://doi.org/10.2307/1379766
41 https://doi.org/10.2307/2346830
42 https://doi.org/10.2307/3001968
43 https://doi.org/10.2481/dsj.007-020
44 https://doi.org/10.3233/ida-2007-11402
45 https://doi.org/10.3906/elk-1203-119
46 https://doi.org/10.7897/2230-8407.0811242
47 schema:datePublished 2019-03-29
48 schema:datePublishedReg 2019-03-29
49 schema:description Models based on machine learning algorithms have been developed to detect the breast cancer disease early. Feature selection is commonly applied to improve the performance of these models through selecting only relevant features. However, selecting relevant features in unsupervised learning is much difficult. This is due to the absence of class labels that guide the search for relevant information. This kind of the problem has rarely been studied in the literature. This paper presents a hybrid intelligence model that uses the cluster analysis algorithms with bio-inspired algorithms as feature selection for analyzing clinical breast cancer data. A binary version of both moth flame optimization and whale optimization algorithm is proposed. Two evaluation criteria are adopted to evaluate the proposed algorithms: clustering-based measurements and statistics-based measurements. The experimental results positively demonstrate that the capability of the proposed bio-inspired feature selection algorithms to produce both meaningful data partitions and significant feature subsets.
50 schema:genre research_article
51 schema:inLanguage en
52 schema:isAccessibleForFree false
53 schema:isPartOf sg:journal.1126672
54 schema:name Binary Whale Optimization Algorithm and Binary Moth Flame Optimization with Clustering Algorithms for Clinical Breast Cancer Diagnoses
55 schema:pagination 1-31
56 schema:productId N0efa24a5bb324f8ab23635b487dfa4a8
57 Ne72309fd62174be7a9aab29a566871fe
58 Nf08fa50ad27a4fd6a6a60bf5e0ca6a5c
59 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113108797
60 https://doi.org/10.1007/s00357-018-9297-3
61 schema:sdDatePublished 2019-04-11T13:24
62 schema:sdLicense https://scigraph.springernature.com/explorer/license/
63 schema:sdPublisher Nc4091d5532f3419684dcf26e876b4777
64 schema:url https://link.springer.com/10.1007%2Fs00357-018-9297-3
65 sgo:license sg:explorer/license/
66 sgo:sdDataset articles
67 rdf:type schema:ScholarlyArticle
68 N0bf99eb825264f2fbb27e317a290bbdb rdf:first Nc7a87ae97017411d84918e25ec24094e
69 rdf:rest rdf:nil
70 N0efa24a5bb324f8ab23635b487dfa4a8 schema:name doi
71 schema:value 10.1007/s00357-018-9297-3
72 rdf:type schema:PropertyValue
73 N35f379e4da9445d19d9f9cb2022131a7 schema:affiliation https://www.grid.ac/institutes/grid.412093.d
74 schema:familyName Darwish
75 schema:givenName Ashraf
76 rdf:type schema:Person
77 N4ecc3ed27fb04576aa81fbe4d66771af schema:affiliation https://www.grid.ac/institutes/grid.7776.1
78 schema:familyName Sayed
79 schema:givenName Gehad Ismail
80 rdf:type schema:Person
81 Nbc81877c83474e429348e97b582dacd6 rdf:first N35f379e4da9445d19d9f9cb2022131a7
82 rdf:rest N0bf99eb825264f2fbb27e317a290bbdb
83 Nc4091d5532f3419684dcf26e876b4777 schema:name Springer Nature - SN SciGraph project
84 rdf:type schema:Organization
85 Nc7a87ae97017411d84918e25ec24094e schema:affiliation https://www.grid.ac/institutes/grid.7776.1
86 schema:familyName Hassanien
87 schema:givenName Aboul Ella
88 rdf:type schema:Person
89 Ndc148358e4a54aa192abd186d0e4f409 rdf:first N4ecc3ed27fb04576aa81fbe4d66771af
90 rdf:rest Nbc81877c83474e429348e97b582dacd6
91 Ne72309fd62174be7a9aab29a566871fe schema:name readcube_id
92 schema:value a3478df81171328ff2ad8477d074d4f22bd446f9ad9acb18bcaa0688946aa613
93 rdf:type schema:PropertyValue
94 Nf08fa50ad27a4fd6a6a60bf5e0ca6a5c schema:name dimensions_id
95 schema:value pub.1113108797
96 rdf:type schema:PropertyValue
97 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
98 schema:name Information and Computing Sciences
99 rdf:type schema:DefinedTerm
100 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
101 schema:name Artificial Intelligence and Image Processing
102 rdf:type schema:DefinedTerm
103 sg:journal.1126672 schema:issn 0176-4268
104 1432-1343
105 schema:name Journal of Classification
106 rdf:type schema:Periodical
107 sg:pub.10.1007/978-3-319-33793-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084930587
108 https://doi.org/10.1007/978-3-319-33793-7
109 rdf:type schema:CreativeWork
110 sg:pub.10.1007/978-3-642-32894-7_27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023291595
111 https://doi.org/10.1007/978-3-642-32894-7_27
112 rdf:type schema:CreativeWork
113 sg:pub.10.1007/bf00337288 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009635558
114 https://doi.org/10.1007/bf00337288
115 rdf:type schema:CreativeWork
116 sg:pub.10.1007/s00202-017-0539-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1085433859
117 https://doi.org/10.1007/s00202-017-0539-x
118 rdf:type schema:CreativeWork
119 sg:pub.10.1007/s00357-007-0003-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014089582
120 https://doi.org/10.1007/s00357-007-0003-0
121 rdf:type schema:CreativeWork
122 sg:pub.10.1007/s00500-008-0303-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007348038
123 https://doi.org/10.1007/s00500-008-0303-2
124 rdf:type schema:CreativeWork
125 sg:pub.10.1007/s00521-017-2988-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085056925
126 https://doi.org/10.1007/s00521-017-2988-6
127 rdf:type schema:CreativeWork
128 sg:pub.10.1007/s00521-017-3228-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092482297
129 https://doi.org/10.1007/s00521-017-3228-9
130 rdf:type schema:CreativeWork
131 sg:pub.10.1007/s10489-017-0897-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084024861
132 https://doi.org/10.1007/s10489-017-0897-0
133 rdf:type schema:CreativeWork
134 sg:pub.10.1007/s11336-007-9019-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1029616509
135 https://doi.org/10.1007/s11336-007-9019-y
136 rdf:type schema:CreativeWork
137 sg:pub.10.1023/a:1012801612483 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018051122
138 https://doi.org/10.1023/a:1012801612483
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1002/ar.20407 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006364647
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/j.advengsoft.2013.12.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036158139
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/j.advengsoft.2016.01.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053442576
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1016/j.asoc.2013.10.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036714548
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1016/j.asoc.2016.04.034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036450304
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1016/j.ecolind.2017.06.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085996424
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1016/j.eswa.2011.01.167 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047514835
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1016/j.eswa.2013.08.044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051874913
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1016/j.eswa.2017.04.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085208897
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1016/j.ins.2013.02.041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028706101
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1016/j.jcp.2007.06.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034411032
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1016/j.knosys.2015.07.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034277407
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1016/j.neucom.2015.06.083 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034628147
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1016/j.patrec.2016.03.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002969482
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1080/0094965031000136012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023037358
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1080/01969727308546046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050066984
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1080/23311916.2017.1286731 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083779127
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1109/cec.2008.4630938 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095199421
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1109/ecai.2017.8166465 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099624241
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1109/icdm.2010.35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094710123
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1109/icnn.1995.488968 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093669333
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1109/tevc.2005.843751 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061604666
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1126/science.1136800 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017347292
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1155/2015/460189 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033372642
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1525/bio.2013.63.2.5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039906785
189 rdf:type schema:CreativeWork
190 https://doi.org/10.2307/1379766 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069460514
191 rdf:type schema:CreativeWork
192 https://doi.org/10.2307/2346830 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101982469
193 rdf:type schema:CreativeWork
194 https://doi.org/10.2307/3001968 schema:sameAs https://app.dimensions.ai/details/publication/pub.1102728208
195 rdf:type schema:CreativeWork
196 https://doi.org/10.2481/dsj.007-020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040423452
197 rdf:type schema:CreativeWork
198 https://doi.org/10.3233/ida-2007-11402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107709301
199 rdf:type schema:CreativeWork
200 https://doi.org/10.3906/elk-1203-119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071567586
201 rdf:type schema:CreativeWork
202 https://doi.org/10.7897/2230-8407.0811242 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099884198
203 rdf:type schema:CreativeWork
204 https://www.grid.ac/institutes/grid.412093.d schema:alternateName Helwan University
205 schema:name Faculty of Science, Helwan University Scientific Research Group in Egypt (SRGE), Cairo, Egypt
206 rdf:type schema:Organization
207 https://www.grid.ac/institutes/grid.7776.1 schema:alternateName Cairo University
208 schema:name Faculty of Computers and Information, Cairo University, Egypt Scientific Research Group in Egypt (SRGE), Cairo, Egypt
209 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...