A characterization of income distributions in terms of generalized Gini coefficients View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2002-10

AUTHORS

Christian Kleiber, Samuel Kotz

ABSTRACT

Most commonly used parametric models for the size distribution of incomes possess only a few finite moments, and hence cannot be characterized by the sequence of their moments. However, all income distributions with a finite mean can be characterized by the sequence of first moments of the order statistics. This is an attractive feature since the generalized Gini coefficients of Kakwani (1980), Donaldson and Weymark (1980, 1983) and Yitzhaki (1983) are simple functions of expectations of sample minima. We present results which streamline these characterizations motivated by Aaberge (2000). More... »

PAGES

789-794

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s003550200154

DOI

http://dx.doi.org/10.1007/s003550200154

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1017489265


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "TU Dortmund University", 
          "id": "https://www.grid.ac/institutes/grid.5675.1", 
          "name": [
            "Fachbereich Statistik, Universit\u00e4t Dortmund, D-44221 Dortmund, Germany (e-mail: Kleiber@statistik.uni-dortmund.de), DE"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kleiber", 
        "givenName": "Christian", 
        "id": "sg:person.011122601215.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011122601215.83"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "George Washington University", 
          "id": "https://www.grid.ac/institutes/grid.253615.6", 
          "name": [
            "Department of Engineering Management and Systems Engineering, George Washington University, Washington, DC, USA (e-mail: kotz@seas.gwu.edu), US"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kotz", 
        "givenName": "Samuel", 
        "id": "sg:person.011232407533.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011232407533.48"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2002-10", 
    "datePublishedReg": "2002-10-01", 
    "description": "Most commonly used parametric models for the size distribution of incomes possess only a few finite moments, and hence cannot be characterized by the sequence of their moments. However, all income distributions with a finite mean can be characterized by the sequence of first moments of the order statistics. This is an attractive feature since the generalized Gini coefficients of Kakwani (1980), Donaldson and Weymark (1980, 1983) and Yitzhaki (1983) are simple functions of expectations of sample minima. We present results which streamline these characterizations motivated by Aaberge (2000).", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s003550200154", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1028302", 
        "issn": [
          "0176-1714", 
          "1432-217X"
        ], 
        "name": "Social Choice and Welfare", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "19"
      }
    ], 
    "name": "A characterization of income distributions in terms of generalized Gini coefficients", 
    "pagination": "789-794", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "53536227d5d93f41408c69e05ec7008146d4ccea593f11e4e7d9e38ccf73a894"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s003550200154"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1017489265"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s003550200154", 
      "https://app.dimensions.ai/details/publication/pub.1017489265"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T22:24", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000480.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s003550200154"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s003550200154'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s003550200154'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s003550200154'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s003550200154'


 

This table displays all metadata directly associated to this object as RDF triples.

71 TRIPLES      20 PREDICATES      27 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s003550200154 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author N89841f30a2664344a58c9435a506823c
4 schema:datePublished 2002-10
5 schema:datePublishedReg 2002-10-01
6 schema:description Most commonly used parametric models for the size distribution of incomes possess only a few finite moments, and hence cannot be characterized by the sequence of their moments. However, all income distributions with a finite mean can be characterized by the sequence of first moments of the order statistics. This is an attractive feature since the generalized Gini coefficients of Kakwani (1980), Donaldson and Weymark (1980, 1983) and Yitzhaki (1983) are simple functions of expectations of sample minima. We present results which streamline these characterizations motivated by Aaberge (2000).
7 schema:genre research_article
8 schema:inLanguage en
9 schema:isAccessibleForFree false
10 schema:isPartOf N2922ba6b18fb4d089d5f7361192f0ba1
11 N2af7f122b6144d75976d3877ebb9790e
12 sg:journal.1028302
13 schema:name A characterization of income distributions in terms of generalized Gini coefficients
14 schema:pagination 789-794
15 schema:productId N3fa6b62cb9ca4d6ab536743df4c9a816
16 N46241f2732fb430abb889da2656c4e36
17 Nf6b7f613abe8439b8b79bc6b63861ef1
18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017489265
19 https://doi.org/10.1007/s003550200154
20 schema:sdDatePublished 2019-04-10T22:24
21 schema:sdLicense https://scigraph.springernature.com/explorer/license/
22 schema:sdPublisher Ne97cf16f09fc4c258b47a748112159bf
23 schema:url http://link.springer.com/10.1007/s003550200154
24 sgo:license sg:explorer/license/
25 sgo:sdDataset articles
26 rdf:type schema:ScholarlyArticle
27 N076554df7b294f0a9f66910890f2521c rdf:first sg:person.011232407533.48
28 rdf:rest rdf:nil
29 N2922ba6b18fb4d089d5f7361192f0ba1 schema:volumeNumber 19
30 rdf:type schema:PublicationVolume
31 N2af7f122b6144d75976d3877ebb9790e schema:issueNumber 4
32 rdf:type schema:PublicationIssue
33 N3fa6b62cb9ca4d6ab536743df4c9a816 schema:name readcube_id
34 schema:value 53536227d5d93f41408c69e05ec7008146d4ccea593f11e4e7d9e38ccf73a894
35 rdf:type schema:PropertyValue
36 N46241f2732fb430abb889da2656c4e36 schema:name doi
37 schema:value 10.1007/s003550200154
38 rdf:type schema:PropertyValue
39 N89841f30a2664344a58c9435a506823c rdf:first sg:person.011122601215.83
40 rdf:rest N076554df7b294f0a9f66910890f2521c
41 Ne97cf16f09fc4c258b47a748112159bf schema:name Springer Nature - SN SciGraph project
42 rdf:type schema:Organization
43 Nf6b7f613abe8439b8b79bc6b63861ef1 schema:name dimensions_id
44 schema:value pub.1017489265
45 rdf:type schema:PropertyValue
46 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
47 schema:name Mathematical Sciences
48 rdf:type schema:DefinedTerm
49 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
50 schema:name Statistics
51 rdf:type schema:DefinedTerm
52 sg:journal.1028302 schema:issn 0176-1714
53 1432-217X
54 schema:name Social Choice and Welfare
55 rdf:type schema:Periodical
56 sg:person.011122601215.83 schema:affiliation https://www.grid.ac/institutes/grid.5675.1
57 schema:familyName Kleiber
58 schema:givenName Christian
59 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011122601215.83
60 rdf:type schema:Person
61 sg:person.011232407533.48 schema:affiliation https://www.grid.ac/institutes/grid.253615.6
62 schema:familyName Kotz
63 schema:givenName Samuel
64 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011232407533.48
65 rdf:type schema:Person
66 https://www.grid.ac/institutes/grid.253615.6 schema:alternateName George Washington University
67 schema:name Department of Engineering Management and Systems Engineering, George Washington University, Washington, DC, USA (e-mail: kotz@seas.gwu.edu), US
68 rdf:type schema:Organization
69 https://www.grid.ac/institutes/grid.5675.1 schema:alternateName TU Dortmund University
70 schema:name Fachbereich Statistik, Universität Dortmund, D-44221 Dortmund, Germany (e-mail: Kleiber@statistik.uni-dortmund.de), DE
71 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...