A characterization of income distributions in terms of generalized Gini coefficients View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2002-10

AUTHORS

Christian Kleiber, Samuel Kotz

ABSTRACT

Most commonly used parametric models for the size distribution of incomes possess only a few finite moments, and hence cannot be characterized by the sequence of their moments. However, all income distributions with a finite mean can be characterized by the sequence of first moments of the order statistics. This is an attractive feature since the generalized Gini coefficients of Kakwani (1980), Donaldson and Weymark (1980, 1983) and Yitzhaki (1983) are simple functions of expectations of sample minima. We present results which streamline these characterizations motivated by Aaberge (2000). More... »

PAGES

789-794

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s003550200154

DOI

http://dx.doi.org/10.1007/s003550200154

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1017489265


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "TU Dortmund University", 
          "id": "https://www.grid.ac/institutes/grid.5675.1", 
          "name": [
            "Fachbereich Statistik, Universit\u00e4t Dortmund, D-44221 Dortmund, Germany (e-mail: Kleiber@statistik.uni-dortmund.de), DE"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kleiber", 
        "givenName": "Christian", 
        "id": "sg:person.011122601215.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011122601215.83"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "George Washington University", 
          "id": "https://www.grid.ac/institutes/grid.253615.6", 
          "name": [
            "Department of Engineering Management and Systems Engineering, George Washington University, Washington, DC, USA (e-mail: kotz@seas.gwu.edu), US"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kotz", 
        "givenName": "Samuel", 
        "id": "sg:person.011232407533.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011232407533.48"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2002-10", 
    "datePublishedReg": "2002-10-01", 
    "description": "Most commonly used parametric models for the size distribution of incomes possess only a few finite moments, and hence cannot be characterized by the sequence of their moments. However, all income distributions with a finite mean can be characterized by the sequence of first moments of the order statistics. This is an attractive feature since the generalized Gini coefficients of Kakwani (1980), Donaldson and Weymark (1980, 1983) and Yitzhaki (1983) are simple functions of expectations of sample minima. We present results which streamline these characterizations motivated by Aaberge (2000).", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s003550200154", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1028302", 
        "issn": [
          "0176-1714", 
          "1432-217X"
        ], 
        "name": "Social Choice and Welfare", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "19"
      }
    ], 
    "name": "A characterization of income distributions in terms of generalized Gini coefficients", 
    "pagination": "789-794", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "53536227d5d93f41408c69e05ec7008146d4ccea593f11e4e7d9e38ccf73a894"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s003550200154"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1017489265"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s003550200154", 
      "https://app.dimensions.ai/details/publication/pub.1017489265"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T22:24", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000480.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s003550200154"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s003550200154'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s003550200154'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s003550200154'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s003550200154'


 

This table displays all metadata directly associated to this object as RDF triples.

71 TRIPLES      20 PREDICATES      27 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s003550200154 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author Naff1b5d299de495abf236eefc409575a
4 schema:datePublished 2002-10
5 schema:datePublishedReg 2002-10-01
6 schema:description Most commonly used parametric models for the size distribution of incomes possess only a few finite moments, and hence cannot be characterized by the sequence of their moments. However, all income distributions with a finite mean can be characterized by the sequence of first moments of the order statistics. This is an attractive feature since the generalized Gini coefficients of Kakwani (1980), Donaldson and Weymark (1980, 1983) and Yitzhaki (1983) are simple functions of expectations of sample minima. We present results which streamline these characterizations motivated by Aaberge (2000).
7 schema:genre research_article
8 schema:inLanguage en
9 schema:isAccessibleForFree false
10 schema:isPartOf N666557524f2443ff848f5cd9051f332c
11 Nb75f4009979841eba81049dfaffe0f4a
12 sg:journal.1028302
13 schema:name A characterization of income distributions in terms of generalized Gini coefficients
14 schema:pagination 789-794
15 schema:productId N256bc0a8550b40cdb1975f025b692f15
16 N76a18f3ec0df476b886e1953455d0053
17 Nde4f562d8466445ea92a1f74d29a8d89
18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017489265
19 https://doi.org/10.1007/s003550200154
20 schema:sdDatePublished 2019-04-10T22:24
21 schema:sdLicense https://scigraph.springernature.com/explorer/license/
22 schema:sdPublisher N51a0baf3debb49b0862e55f5c70bc772
23 schema:url http://link.springer.com/10.1007/s003550200154
24 sgo:license sg:explorer/license/
25 sgo:sdDataset articles
26 rdf:type schema:ScholarlyArticle
27 N256bc0a8550b40cdb1975f025b692f15 schema:name dimensions_id
28 schema:value pub.1017489265
29 rdf:type schema:PropertyValue
30 N4506f2bbbb2a452484372582a20d7485 rdf:first sg:person.011232407533.48
31 rdf:rest rdf:nil
32 N51a0baf3debb49b0862e55f5c70bc772 schema:name Springer Nature - SN SciGraph project
33 rdf:type schema:Organization
34 N666557524f2443ff848f5cd9051f332c schema:issueNumber 4
35 rdf:type schema:PublicationIssue
36 N76a18f3ec0df476b886e1953455d0053 schema:name readcube_id
37 schema:value 53536227d5d93f41408c69e05ec7008146d4ccea593f11e4e7d9e38ccf73a894
38 rdf:type schema:PropertyValue
39 Naff1b5d299de495abf236eefc409575a rdf:first sg:person.011122601215.83
40 rdf:rest N4506f2bbbb2a452484372582a20d7485
41 Nb75f4009979841eba81049dfaffe0f4a schema:volumeNumber 19
42 rdf:type schema:PublicationVolume
43 Nde4f562d8466445ea92a1f74d29a8d89 schema:name doi
44 schema:value 10.1007/s003550200154
45 rdf:type schema:PropertyValue
46 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
47 schema:name Mathematical Sciences
48 rdf:type schema:DefinedTerm
49 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
50 schema:name Statistics
51 rdf:type schema:DefinedTerm
52 sg:journal.1028302 schema:issn 0176-1714
53 1432-217X
54 schema:name Social Choice and Welfare
55 rdf:type schema:Periodical
56 sg:person.011122601215.83 schema:affiliation https://www.grid.ac/institutes/grid.5675.1
57 schema:familyName Kleiber
58 schema:givenName Christian
59 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011122601215.83
60 rdf:type schema:Person
61 sg:person.011232407533.48 schema:affiliation https://www.grid.ac/institutes/grid.253615.6
62 schema:familyName Kotz
63 schema:givenName Samuel
64 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011232407533.48
65 rdf:type schema:Person
66 https://www.grid.ac/institutes/grid.253615.6 schema:alternateName George Washington University
67 schema:name Department of Engineering Management and Systems Engineering, George Washington University, Washington, DC, USA (e-mail: kotz@seas.gwu.edu), US
68 rdf:type schema:Organization
69 https://www.grid.ac/institutes/grid.5675.1 schema:alternateName TU Dortmund University
70 schema:name Fachbereich Statistik, Universität Dortmund, D-44221 Dortmund, Germany (e-mail: Kleiber@statistik.uni-dortmund.de), DE
71 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...