Twofold optimality of the relative utilitarian bargaining solution View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2009-01

AUTHORS

Marcus Pivato

ABSTRACT

Given a bargaining problem, the relative utilitarian (RU) solution maximizes the sum total of the bargainer’s utilities, after having first renormalized each utility function to range from zero to one. We show that RU is “optimal” in two very different senses. First, RU is the maximal element (over the set of all bargaining solutions) under any partial ordering which satisfies certain axioms of fairness and consistency; this result is closely analogous to the result of Segal (J Polit Econ 108(3):569–589, 2000). Second, RU offers each person the maximum expected utility amongst all rescaling-invariant solutions, when it is applied to a random sequence of future bargaining problems generated using a certain class of distributions; this is recalls the results of Harsanyi (J Polit Econ 61:434–435, 1953) and Karni (Econometrica 66(6):1405–1415, 1998). More... »

PAGES

79-92

References to SciGraph publications

Journal

TITLE

Social Choice and Welfare

ISSUE

1

VOLUME

32

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00355-008-0313-0

DOI

http://dx.doi.org/10.1007/s00355-008-0313-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1008342551


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Trent University", 
          "id": "https://www.grid.ac/institutes/grid.52539.38", 
          "name": [
            "Department of Mathematics, Trent University, 1600 West Bank Drive, K9J 7B8, Peterborough, ON, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pivato", 
        "givenName": "Marcus", 
        "id": "sg:person.0763241106.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0763241106.85"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00355-003-0203-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017624698", 
          "https://doi.org/10.1007/s00355-003-0203-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1026432128221", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041323371", 
          "https://doi.org/10.1023/a:1026432128221"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/1468-0262.00033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041724409"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00433765", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046845580", 
          "https://doi.org/10.1007/bf00433765"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s003550050108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047685290", 
          "https://doi.org/10.1007/s003550050108"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s003550050121", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048974156", 
          "https://doi.org/10.1007/s003550050121"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/257416", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058570897"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/257678", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058571159"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/262129", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058575610"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1907266", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069636754"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1912508", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069640144"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1913954", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069641087"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1914280", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069641319"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2296793", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069868302"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2297061", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069868534"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2297086", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069868557"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2999622", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070163410"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cdc.1982.268420", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086181314"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511571756", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098679323"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511607950", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098705787"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2009-01", 
    "datePublishedReg": "2009-01-01", 
    "description": "Given a bargaining problem, the relative utilitarian (RU) solution maximizes the sum total of the bargainer\u2019s utilities, after having first renormalized each utility function to range from zero to one. We show that RU is \u201coptimal\u201d in two very different senses. First, RU is the maximal element (over the set of all bargaining solutions) under any partial ordering which satisfies certain axioms of fairness and consistency; this result is closely analogous to the result of Segal (J Polit Econ 108(3):569\u2013589, 2000). Second, RU offers each person the maximum expected utility amongst all rescaling-invariant solutions, when it is applied to a random sequence of future bargaining problems generated using a certain class of distributions; this is recalls the results of Harsanyi (J Polit Econ 61:434\u2013435, 1953) and Karni (Econometrica 66(6):1405\u20131415, 1998).", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00355-008-0313-0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1028302", 
        "issn": [
          "0176-1714", 
          "1432-217X"
        ], 
        "name": "Social Choice and Welfare", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "32"
      }
    ], 
    "name": "Twofold optimality of the relative utilitarian bargaining solution", 
    "pagination": "79-92", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "27bea8b916fd92b3131a50d703185daeff9b113dc94b285520feb23429dbf1c6"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00355-008-0313-0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1008342551"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00355-008-0313-0", 
      "https://app.dimensions.ai/details/publication/pub.1008342551"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T14:31", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000373_0000000373/records_13099_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s00355-008-0313-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00355-008-0313-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00355-008-0313-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00355-008-0313-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00355-008-0313-0'


 

This table displays all metadata directly associated to this object as RDF triples.

126 TRIPLES      21 PREDICATES      47 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00355-008-0313-0 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author N4d79b9fb032f494895c0d15424f11c2c
4 schema:citation sg:pub.10.1007/bf00433765
5 sg:pub.10.1007/s00355-003-0203-4
6 sg:pub.10.1007/s003550050108
7 sg:pub.10.1007/s003550050121
8 sg:pub.10.1023/a:1026432128221
9 https://doi.org/10.1017/cbo9780511571756
10 https://doi.org/10.1017/cbo9780511607950
11 https://doi.org/10.1086/257416
12 https://doi.org/10.1086/257678
13 https://doi.org/10.1086/262129
14 https://doi.org/10.1109/cdc.1982.268420
15 https://doi.org/10.1111/1468-0262.00033
16 https://doi.org/10.2307/1907266
17 https://doi.org/10.2307/1912508
18 https://doi.org/10.2307/1913954
19 https://doi.org/10.2307/1914280
20 https://doi.org/10.2307/2296793
21 https://doi.org/10.2307/2297061
22 https://doi.org/10.2307/2297086
23 https://doi.org/10.2307/2999622
24 schema:datePublished 2009-01
25 schema:datePublishedReg 2009-01-01
26 schema:description Given a bargaining problem, the relative utilitarian (RU) solution maximizes the sum total of the bargainer’s utilities, after having first renormalized each utility function to range from zero to one. We show that RU is “optimal” in two very different senses. First, RU is the maximal element (over the set of all bargaining solutions) under any partial ordering which satisfies certain axioms of fairness and consistency; this result is closely analogous to the result of Segal (J Polit Econ 108(3):569–589, 2000). Second, RU offers each person the maximum expected utility amongst all rescaling-invariant solutions, when it is applied to a random sequence of future bargaining problems generated using a certain class of distributions; this is recalls the results of Harsanyi (J Polit Econ 61:434–435, 1953) and Karni (Econometrica 66(6):1405–1415, 1998).
27 schema:genre research_article
28 schema:inLanguage en
29 schema:isAccessibleForFree true
30 schema:isPartOf N40044b949e0c44a9b809020cbf052832
31 Ndef611ecbcfb452b90ed375252b0d1a9
32 sg:journal.1028302
33 schema:name Twofold optimality of the relative utilitarian bargaining solution
34 schema:pagination 79-92
35 schema:productId N0f689d67c958497294ec7438be68c15e
36 N533f619fea0b43d8b11098dcec98133f
37 Ne893ec075bf54519b6a539828fe5cd0d
38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008342551
39 https://doi.org/10.1007/s00355-008-0313-0
40 schema:sdDatePublished 2019-04-11T14:31
41 schema:sdLicense https://scigraph.springernature.com/explorer/license/
42 schema:sdPublisher N58df0183913640f496f290541f7ea99d
43 schema:url http://link.springer.com/10.1007/s00355-008-0313-0
44 sgo:license sg:explorer/license/
45 sgo:sdDataset articles
46 rdf:type schema:ScholarlyArticle
47 N0f689d67c958497294ec7438be68c15e schema:name readcube_id
48 schema:value 27bea8b916fd92b3131a50d703185daeff9b113dc94b285520feb23429dbf1c6
49 rdf:type schema:PropertyValue
50 N40044b949e0c44a9b809020cbf052832 schema:volumeNumber 32
51 rdf:type schema:PublicationVolume
52 N4d79b9fb032f494895c0d15424f11c2c rdf:first sg:person.0763241106.85
53 rdf:rest rdf:nil
54 N533f619fea0b43d8b11098dcec98133f schema:name doi
55 schema:value 10.1007/s00355-008-0313-0
56 rdf:type schema:PropertyValue
57 N58df0183913640f496f290541f7ea99d schema:name Springer Nature - SN SciGraph project
58 rdf:type schema:Organization
59 Ndef611ecbcfb452b90ed375252b0d1a9 schema:issueNumber 1
60 rdf:type schema:PublicationIssue
61 Ne893ec075bf54519b6a539828fe5cd0d schema:name dimensions_id
62 schema:value pub.1008342551
63 rdf:type schema:PropertyValue
64 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
65 schema:name Mathematical Sciences
66 rdf:type schema:DefinedTerm
67 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
68 schema:name Statistics
69 rdf:type schema:DefinedTerm
70 sg:journal.1028302 schema:issn 0176-1714
71 1432-217X
72 schema:name Social Choice and Welfare
73 rdf:type schema:Periodical
74 sg:person.0763241106.85 schema:affiliation https://www.grid.ac/institutes/grid.52539.38
75 schema:familyName Pivato
76 schema:givenName Marcus
77 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0763241106.85
78 rdf:type schema:Person
79 sg:pub.10.1007/bf00433765 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046845580
80 https://doi.org/10.1007/bf00433765
81 rdf:type schema:CreativeWork
82 sg:pub.10.1007/s00355-003-0203-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017624698
83 https://doi.org/10.1007/s00355-003-0203-4
84 rdf:type schema:CreativeWork
85 sg:pub.10.1007/s003550050108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047685290
86 https://doi.org/10.1007/s003550050108
87 rdf:type schema:CreativeWork
88 sg:pub.10.1007/s003550050121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048974156
89 https://doi.org/10.1007/s003550050121
90 rdf:type schema:CreativeWork
91 sg:pub.10.1023/a:1026432128221 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041323371
92 https://doi.org/10.1023/a:1026432128221
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1017/cbo9780511571756 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098679323
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1017/cbo9780511607950 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098705787
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1086/257416 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058570897
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1086/257678 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058571159
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1086/262129 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058575610
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1109/cdc.1982.268420 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086181314
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1111/1468-0262.00033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041724409
107 rdf:type schema:CreativeWork
108 https://doi.org/10.2307/1907266 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069636754
109 rdf:type schema:CreativeWork
110 https://doi.org/10.2307/1912508 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069640144
111 rdf:type schema:CreativeWork
112 https://doi.org/10.2307/1913954 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069641087
113 rdf:type schema:CreativeWork
114 https://doi.org/10.2307/1914280 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069641319
115 rdf:type schema:CreativeWork
116 https://doi.org/10.2307/2296793 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069868302
117 rdf:type schema:CreativeWork
118 https://doi.org/10.2307/2297061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069868534
119 rdf:type schema:CreativeWork
120 https://doi.org/10.2307/2297086 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069868557
121 rdf:type schema:CreativeWork
122 https://doi.org/10.2307/2999622 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070163410
123 rdf:type schema:CreativeWork
124 https://www.grid.ac/institutes/grid.52539.38 schema:alternateName Trent University
125 schema:name Department of Mathematics, Trent University, 1600 West Bank Drive, K9J 7B8, Peterborough, ON, Canada
126 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...