Design and Development of Modified Ensemble Learning with Weighted RBM Features for Enhanced Multi-disease Prediction Model View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2022-09-08

AUTHORS

A. S. Prakaash, K. Sivakumar, B. Surendiran, S. Jagatheswari, K. Kalaiarasi

ABSTRACT

In this computer world, huge data are generated in several fields. Statistics in the healthcare engineering provides data about many diseases and corresponding patient’s information. These data help to evaluate a huge amount of data for identifying the unknown patterns in the diseases and are also utilized for predicting the disease. Hence, this work is to plan and implement a new computer-aided technique named modified Ensemble Learning with Weighted RBM Features (EL-WRBM). Data collection is an initial process, in which the data of various diseases are gathered from UCI repository and Kaggle. Then, the gathered data are pre-processed by missing data filling technique. Then, the pre-processed data are performed by deep belief network (DBN), in which the weighted features are extracted from the RBM regions. Then, the prediction is made by ensemble learning with classifiers, namely, support vector machine (SVM), recurrent neural network (RNN), and deep neural network (DNN), in which hyper-parameters are optimized by the adaptive spreading rate-based coronavirus herd immunity optimizer (ASR-CHIO). At the end, the simulation analysis reveals that the suggested model has implications to support doctor diagnoses. More... »

PAGES

1-39

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00354-022-00190-2

DOI

http://dx.doi.org/10.1007/s00354-022-00190-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1150856585

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/36101778


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Mathematics, Panimalar Engineering College, Poonamallee, 600 123, Chennai, Tamilnadu, India", 
          "id": "http://www.grid.ac/institutes/grid.252262.3", 
          "name": [
            "Department of Mathematics, Panimalar Engineering College, Poonamallee, 600 123, Chennai, Tamilnadu, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Prakaash", 
        "givenName": "A. S.", 
        "id": "sg:person.016627747574.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016627747574.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences(SIMATS), Thandalam, 602 105, Chennai, Tamil Nadu, India", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Department of Mathematics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences(SIMATS), Thandalam, 602 105, Chennai, Tamil Nadu, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sivakumar", 
        "givenName": "K.", 
        "id": "sg:person.011734765207.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011734765207.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Computer Science and Engineering, National Institute of Technology karaikal, Karaikal, India", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Department of Computer Science and Engineering, National Institute of Technology karaikal, Karaikal, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Surendiran", 
        "givenName": "B.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematics, Vellore Institute of Technology, Vellore, India", 
          "id": "http://www.grid.ac/institutes/grid.412813.d", 
          "name": [
            "Department of Mathematics, Vellore Institute of Technology, Vellore, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jagatheswari", 
        "givenName": "S.", 
        "id": "sg:person.010167363151.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010167363151.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "PG and Research Department of Mathematics, Cauvery College for Women Autonomous Trichy, Trichy, India", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "PG and Research Department of Mathematics, Cauvery College for Women Autonomous Trichy, Trichy, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kalaiarasi", 
        "givenName": "K.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s12065-020-00505-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1131611199", 
          "https://doi.org/10.1007/s12065-020-00505-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12046-021-01574-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1136749588", 
          "https://doi.org/10.1007/s12046-021-01574-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12652-019-01652-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1123788154", 
          "https://doi.org/10.1007/s12652-019-01652-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12065-020-00477-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1130717943", 
          "https://doi.org/10.1007/s12065-020-00477-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-71767-8_80", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101107148", 
          "https://doi.org/10.1007/978-3-319-71767-8_80"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00521-020-05296-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1130392431", 
          "https://doi.org/10.1007/s00521-020-05296-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-981-15-5788-0_38", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1130690951", 
          "https://doi.org/10.1007/978-981-15-5788-0_38"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12652-020-02030-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1127640024", 
          "https://doi.org/10.1007/s12652-020-02030-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-981-15-5566-4_31", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1131289815", 
          "https://doi.org/10.1007/978-981-15-5566-4_31"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13534-021-00209-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1142425069", 
          "https://doi.org/10.1007/s13534-021-00209-5"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2022-09-08", 
    "datePublishedReg": "2022-09-08", 
    "description": "In this computer world, huge data are generated in several fields. Statistics in the healthcare engineering provides data about many diseases and corresponding patient\u2019s information. These data help to evaluate a huge amount of data for identifying the unknown patterns in the diseases and are also utilized for predicting the disease. Hence, this work is to plan and implement a new computer-aided technique named modified Ensemble Learning with Weighted RBM Features (EL-WRBM). Data collection is an initial process, in which the data of various diseases are gathered from UCI repository and Kaggle. Then, the gathered data are pre-processed by missing data filling technique. Then, the pre-processed data are performed by deep belief network (DBN), in which the weighted features are extracted from the RBM regions. Then, the prediction is made by ensemble learning with classifiers, namely, support vector machine (SVM), recurrent neural network (RNN), and deep neural network (DNN), in which hyper-parameters are optimized by the adaptive spreading rate-based coronavirus herd immunity optimizer (ASR-CHIO). At the end, the simulation analysis reveals that the suggested model has implications to support doctor diagnoses.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00354-022-00190-2", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1053619", 
        "issn": [
          "0288-3635", 
          "1882-7055"
        ], 
        "name": "New Generation Computing", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }
    ], 
    "keywords": [
      "deep neural networks", 
      "deep belief network", 
      "recurrent neural network", 
      "neural network", 
      "pre-processed data", 
      "new computer-aided technique", 
      "coronavirus herd immunity optimizer", 
      "computer-aided techniques", 
      "huge data", 
      "computer world", 
      "UCI repository", 
      "ensemble learning", 
      "belief network", 
      "vector machine", 
      "huge amount", 
      "unknown patterns", 
      "network", 
      "patient information", 
      "Healthcare Engineering", 
      "prediction model", 
      "data collection", 
      "doctor's diagnosis", 
      "Kaggle", 
      "classifier", 
      "simulation analysis", 
      "information", 
      "repository", 
      "machine", 
      "optimizer", 
      "features", 
      "learning", 
      "technique", 
      "data", 
      "model", 
      "engineering", 
      "collection", 
      "ensemble", 
      "help", 
      "design", 
      "initial process", 
      "work", 
      "prediction", 
      "world", 
      "data help", 
      "process", 
      "statistics", 
      "end", 
      "field", 
      "amount", 
      "development", 
      "filling technique", 
      "patterns", 
      "analysis", 
      "diagnosis", 
      "region", 
      "implications", 
      "disease", 
      "RBM region"
    ], 
    "name": "Design and Development of Modified Ensemble Learning with Weighted RBM Features for Enhanced Multi-disease Prediction Model", 
    "pagination": "1-39", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1150856585"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00354-022-00190-2"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "36101778"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00354-022-00190-2", 
      "https://app.dimensions.ai/details/publication/pub.1150856585"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:44", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_946.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00354-022-00190-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00354-022-00190-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00354-022-00190-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00354-022-00190-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00354-022-00190-2'


 

This table displays all metadata directly associated to this object as RDF triples.

189 TRIPLES      21 PREDICATES      91 URIs      73 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00354-022-00190-2 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Ne6d6b16683984465840ec86410d64403
4 schema:citation sg:pub.10.1007/978-3-319-71767-8_80
5 sg:pub.10.1007/978-981-15-5566-4_31
6 sg:pub.10.1007/978-981-15-5788-0_38
7 sg:pub.10.1007/s00521-020-05296-6
8 sg:pub.10.1007/s12046-021-01574-8
9 sg:pub.10.1007/s12065-020-00477-7
10 sg:pub.10.1007/s12065-020-00505-6
11 sg:pub.10.1007/s12652-019-01652-0
12 sg:pub.10.1007/s12652-020-02030-x
13 sg:pub.10.1007/s13534-021-00209-5
14 schema:datePublished 2022-09-08
15 schema:datePublishedReg 2022-09-08
16 schema:description In this computer world, huge data are generated in several fields. Statistics in the healthcare engineering provides data about many diseases and corresponding patient’s information. These data help to evaluate a huge amount of data for identifying the unknown patterns in the diseases and are also utilized for predicting the disease. Hence, this work is to plan and implement a new computer-aided technique named modified Ensemble Learning with Weighted RBM Features (EL-WRBM). Data collection is an initial process, in which the data of various diseases are gathered from UCI repository and Kaggle. Then, the gathered data are pre-processed by missing data filling technique. Then, the pre-processed data are performed by deep belief network (DBN), in which the weighted features are extracted from the RBM regions. Then, the prediction is made by ensemble learning with classifiers, namely, support vector machine (SVM), recurrent neural network (RNN), and deep neural network (DNN), in which hyper-parameters are optimized by the adaptive spreading rate-based coronavirus herd immunity optimizer (ASR-CHIO). At the end, the simulation analysis reveals that the suggested model has implications to support doctor diagnoses.
17 schema:genre article
18 schema:isAccessibleForFree true
19 schema:isPartOf sg:journal.1053619
20 schema:keywords Healthcare Engineering
21 Kaggle
22 RBM region
23 UCI repository
24 amount
25 analysis
26 belief network
27 classifier
28 collection
29 computer world
30 computer-aided techniques
31 coronavirus herd immunity optimizer
32 data
33 data collection
34 data help
35 deep belief network
36 deep neural networks
37 design
38 development
39 diagnosis
40 disease
41 doctor's diagnosis
42 end
43 engineering
44 ensemble
45 ensemble learning
46 features
47 field
48 filling technique
49 help
50 huge amount
51 huge data
52 implications
53 information
54 initial process
55 learning
56 machine
57 model
58 network
59 neural network
60 new computer-aided technique
61 optimizer
62 patient information
63 patterns
64 pre-processed data
65 prediction
66 prediction model
67 process
68 recurrent neural network
69 region
70 repository
71 simulation analysis
72 statistics
73 technique
74 unknown patterns
75 vector machine
76 work
77 world
78 schema:name Design and Development of Modified Ensemble Learning with Weighted RBM Features for Enhanced Multi-disease Prediction Model
79 schema:pagination 1-39
80 schema:productId N4af8a1fdbdfc46cf884884453915e975
81 N8f3aaa2dcd0b408fb407126d1d69c581
82 Nf7211690a46a4d0283f90865202ee93a
83 schema:sameAs https://app.dimensions.ai/details/publication/pub.1150856585
84 https://doi.org/10.1007/s00354-022-00190-2
85 schema:sdDatePublished 2022-12-01T06:44
86 schema:sdLicense https://scigraph.springernature.com/explorer/license/
87 schema:sdPublisher Nf9a57081ba2f493aba5db3a19f340bce
88 schema:url https://doi.org/10.1007/s00354-022-00190-2
89 sgo:license sg:explorer/license/
90 sgo:sdDataset articles
91 rdf:type schema:ScholarlyArticle
92 N14526329f5bf4f5985b21de347c181cc rdf:first sg:person.010167363151.24
93 rdf:rest N97d0a97100044d69bbb4829e974eb911
94 N2bfad27140cd4eee991160df5e0962b6 schema:affiliation grid-institutes:None
95 schema:familyName Kalaiarasi
96 schema:givenName K.
97 rdf:type schema:Person
98 N4af8a1fdbdfc46cf884884453915e975 schema:name doi
99 schema:value 10.1007/s00354-022-00190-2
100 rdf:type schema:PropertyValue
101 N661eea20b5414f3484a5046e7409adbf schema:affiliation grid-institutes:None
102 schema:familyName Surendiran
103 schema:givenName B.
104 rdf:type schema:Person
105 N8f3aaa2dcd0b408fb407126d1d69c581 schema:name pubmed_id
106 schema:value 36101778
107 rdf:type schema:PropertyValue
108 N97d0a97100044d69bbb4829e974eb911 rdf:first N2bfad27140cd4eee991160df5e0962b6
109 rdf:rest rdf:nil
110 Nc677cdc32f804a61810980ba969c82ed rdf:first sg:person.011734765207.18
111 rdf:rest Ne03222b493c64147a2b140774fd7f4b8
112 Ne03222b493c64147a2b140774fd7f4b8 rdf:first N661eea20b5414f3484a5046e7409adbf
113 rdf:rest N14526329f5bf4f5985b21de347c181cc
114 Ne6d6b16683984465840ec86410d64403 rdf:first sg:person.016627747574.46
115 rdf:rest Nc677cdc32f804a61810980ba969c82ed
116 Nf7211690a46a4d0283f90865202ee93a schema:name dimensions_id
117 schema:value pub.1150856585
118 rdf:type schema:PropertyValue
119 Nf9a57081ba2f493aba5db3a19f340bce schema:name Springer Nature - SN SciGraph project
120 rdf:type schema:Organization
121 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
122 schema:name Information and Computing Sciences
123 rdf:type schema:DefinedTerm
124 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
125 schema:name Artificial Intelligence and Image Processing
126 rdf:type schema:DefinedTerm
127 sg:journal.1053619 schema:issn 0288-3635
128 1882-7055
129 schema:name New Generation Computing
130 schema:publisher Springer Nature
131 rdf:type schema:Periodical
132 sg:person.010167363151.24 schema:affiliation grid-institutes:grid.412813.d
133 schema:familyName Jagatheswari
134 schema:givenName S.
135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010167363151.24
136 rdf:type schema:Person
137 sg:person.011734765207.18 schema:affiliation grid-institutes:None
138 schema:familyName Sivakumar
139 schema:givenName K.
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011734765207.18
141 rdf:type schema:Person
142 sg:person.016627747574.46 schema:affiliation grid-institutes:grid.252262.3
143 schema:familyName Prakaash
144 schema:givenName A. S.
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016627747574.46
146 rdf:type schema:Person
147 sg:pub.10.1007/978-3-319-71767-8_80 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101107148
148 https://doi.org/10.1007/978-3-319-71767-8_80
149 rdf:type schema:CreativeWork
150 sg:pub.10.1007/978-981-15-5566-4_31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1131289815
151 https://doi.org/10.1007/978-981-15-5566-4_31
152 rdf:type schema:CreativeWork
153 sg:pub.10.1007/978-981-15-5788-0_38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1130690951
154 https://doi.org/10.1007/978-981-15-5788-0_38
155 rdf:type schema:CreativeWork
156 sg:pub.10.1007/s00521-020-05296-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1130392431
157 https://doi.org/10.1007/s00521-020-05296-6
158 rdf:type schema:CreativeWork
159 sg:pub.10.1007/s12046-021-01574-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1136749588
160 https://doi.org/10.1007/s12046-021-01574-8
161 rdf:type schema:CreativeWork
162 sg:pub.10.1007/s12065-020-00477-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1130717943
163 https://doi.org/10.1007/s12065-020-00477-7
164 rdf:type schema:CreativeWork
165 sg:pub.10.1007/s12065-020-00505-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1131611199
166 https://doi.org/10.1007/s12065-020-00505-6
167 rdf:type schema:CreativeWork
168 sg:pub.10.1007/s12652-019-01652-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1123788154
169 https://doi.org/10.1007/s12652-019-01652-0
170 rdf:type schema:CreativeWork
171 sg:pub.10.1007/s12652-020-02030-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1127640024
172 https://doi.org/10.1007/s12652-020-02030-x
173 rdf:type schema:CreativeWork
174 sg:pub.10.1007/s13534-021-00209-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1142425069
175 https://doi.org/10.1007/s13534-021-00209-5
176 rdf:type schema:CreativeWork
177 grid-institutes:None schema:alternateName Department of Computer Science and Engineering, National Institute of Technology karaikal, Karaikal, India
178 Department of Mathematics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences(SIMATS), Thandalam, 602 105, Chennai, Tamil Nadu, India
179 PG and Research Department of Mathematics, Cauvery College for Women Autonomous Trichy, Trichy, India
180 schema:name Department of Computer Science and Engineering, National Institute of Technology karaikal, Karaikal, India
181 Department of Mathematics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences(SIMATS), Thandalam, 602 105, Chennai, Tamil Nadu, India
182 PG and Research Department of Mathematics, Cauvery College for Women Autonomous Trichy, Trichy, India
183 rdf:type schema:Organization
184 grid-institutes:grid.252262.3 schema:alternateName Department of Mathematics, Panimalar Engineering College, Poonamallee, 600 123, Chennai, Tamilnadu, India
185 schema:name Department of Mathematics, Panimalar Engineering College, Poonamallee, 600 123, Chennai, Tamilnadu, India
186 rdf:type schema:Organization
187 grid-institutes:grid.412813.d schema:alternateName Department of Mathematics, Vellore Institute of Technology, Vellore, India
188 schema:name Department of Mathematics, Vellore Institute of Technology, Vellore, India
189 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...