A Hybrid Knowledge Push Method Based on Trust-Aware and Item-Cluster Oriented to Product Design View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03-06

AUTHORS

Shuyou Zhang, Ye Gu, Guodong Yi

ABSTRACT

A knowledge push system as a proactive method of knowledge management, and is an effective way to push knowledge to designers in the product design process. Knowledge push can help to improve design efficiency and quality, but the knowledge pushed to designers is less applicable in engineering scenarios. To improve the quality of knowledge push, we propose the trust-aware and item-cluster strategies to extract the two nearest neighbors of the designers and the design knowledge. Next, we adapt a fusion model for the two nearest neighbors, which is solved based on the gradient descent algorithm. Finally, the rating prediction that the designer gives to the knowledge component is the decision point of the knowledge push system, where we propose our final hybrid knowledge push method. A knowledge push system of CNC machine tools design is used to confirm that our method outperforms the other widely adopted methods. More... »

PAGES

1-19

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00354-019-00053-3

DOI

http://dx.doi.org/10.1007/s00354-019-00053-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112587430


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Zhejiang University", 
          "id": "https://www.grid.ac/institutes/grid.13402.34", 
          "name": [
            "State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, 310027, Hangzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Shuyou", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Zhejiang University", 
          "id": "https://www.grid.ac/institutes/grid.13402.34", 
          "name": [
            "State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, 310027, Hangzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gu", 
        "givenName": "Ye", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Zhejiang University", 
          "id": "https://www.grid.ac/institutes/grid.13402.34", 
          "name": [
            "State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, 310027, Hangzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yi", 
        "givenName": "Guodong", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/b978-1-55860-377-6.50048-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002050789"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2009.03.059", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006032616"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11600930_62", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011605328", 
          "https://doi.org/10.1007/11600930_62"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11600930_62", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011605328", 
          "https://doi.org/10.1007/11600930_62"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2939672.2939673", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011682859"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11432-016-5551-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014554932", 
          "https://doi.org/10.1007/s11432-016-5551-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11432-016-5551-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014554932", 
          "https://doi.org/10.1007/s11432-016-5551-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2013/869658", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024945343"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2988450.2988454", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026271373"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/312624.312682", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029340069"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00354-007-0033-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030193939", 
          "https://doi.org/10.1007/s00354-007-0033-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2911451.2911548", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030695334"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.knosys.2016.10.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033765861"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00170-009-2296-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040258287", 
          "https://doi.org/10.1007/s00170-009-2296-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00170-009-2296-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040258287", 
          "https://doi.org/10.1007/s00170-009-2296-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00170-009-2296-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040258287", 
          "https://doi.org/10.1007/s00170-009-2296-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jnca.2013.04.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041749522"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2016.10.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045367728"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1063293x16640319", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047513195"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1063293x16640319", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047513195"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.amc.2014.06.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050498143"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/192844.192905", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051044947"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2554850.2555017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051284821"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00170-016-9813-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053411170", 
          "https://doi.org/10.1007/s00170-016-9813-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00170-016-9813-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053411170", 
          "https://doi.org/10.1007/s00170-016-9813-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnnls.2016.2514368", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061719094"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0954406215584395", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063885000"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0954406215584395", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063885000"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2017.04.046", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085347824"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-61824-1_41", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090239824", 
          "https://doi.org/10.1007/978-3-319-61824-1_41"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-61824-1_41", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090239824", 
          "https://doi.org/10.1007/978-3-319-61824-1_41"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4108/eai.6-7-2017.152759", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090562897"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00354-017-0022-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090804281", 
          "https://doi.org/10.1007/s00354-017-0022-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00354-017-0022-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090804281", 
          "https://doi.org/10.1007/s00354-017-0022-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00500-017-2720-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091306144", 
          "https://doi.org/10.1007/s00500-017-2720-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00500-017-2720-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091306144", 
          "https://doi.org/10.1007/s00500-017-2720-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2017.09.058", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091985650"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/isai.2016.0111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093384930"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/ic-nc.2010.21", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094335882"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1051/matecconf/201713900012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099610759"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ins.2017.12.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099650220"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jpdc.2017.12.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100152885"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2018.01.044", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100740080"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1631/fitee.1700763", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103470119", 
          "https://doi.org/10.1631/fitee.1700763"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00354-018-0044-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106097626", 
          "https://doi.org/10.1007/s00354-018-0044-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7551/mitpress/4073.003.0005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110922941"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03-06", 
    "datePublishedReg": "2019-03-06", 
    "description": "A knowledge push system as a proactive method of knowledge management, and is an effective way to push knowledge to designers in the product design process. Knowledge push can help to improve design efficiency and quality, but the knowledge pushed to designers is less applicable in engineering scenarios. To improve the quality of knowledge push, we propose the trust-aware and item-cluster strategies to extract the two nearest neighbors of the designers and the design knowledge. Next, we adapt a fusion model for the two nearest neighbors, which is solved based on the gradient descent algorithm. Finally, the rating prediction that the designer gives to the knowledge component is the decision point of the knowledge push system, where we propose our final hybrid knowledge push method. A knowledge push system of CNC machine tools design is used to confirm that our method outperforms the other widely adopted methods.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00354-019-00053-3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1053619", 
        "issn": [
          "0288-3635", 
          "1882-7055"
        ], 
        "name": "New Generation Computing", 
        "type": "Periodical"
      }
    ], 
    "name": "A Hybrid Knowledge Push Method Based on Trust-Aware and Item-Cluster Oriented to Product Design", 
    "pagination": "1-19", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "b33c904a7b769c3db6e70eea39ba63a1ac4e58dc8454591338142992a2bd538a"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00354-019-00053-3"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112587430"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00354-019-00053-3", 
      "https://app.dimensions.ai/details/publication/pub.1112587430"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T11:10", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000353_0000000353/records_45348_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00354-019-00053-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00354-019-00053-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00354-019-00053-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00354-019-00053-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00354-019-00053-3'


 

This table displays all metadata directly associated to this object as RDF triples.

184 TRIPLES      21 PREDICATES      60 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00354-019-00053-3 schema:about anzsrc-for:08
2 anzsrc-for:0806
3 schema:author N845215b05249454ca56f00533fce33d5
4 schema:citation sg:pub.10.1007/11600930_62
5 sg:pub.10.1007/978-3-319-61824-1_41
6 sg:pub.10.1007/s00170-009-2296-0
7 sg:pub.10.1007/s00170-016-9813-8
8 sg:pub.10.1007/s00354-007-0033-5
9 sg:pub.10.1007/s00354-017-0022-2
10 sg:pub.10.1007/s00354-018-0044-4
11 sg:pub.10.1007/s00500-017-2720-6
12 sg:pub.10.1007/s11432-016-5551-7
13 sg:pub.10.1631/fitee.1700763
14 https://doi.org/10.1016/b978-1-55860-377-6.50048-7
15 https://doi.org/10.1016/j.amc.2014.06.024
16 https://doi.org/10.1016/j.eswa.2009.03.059
17 https://doi.org/10.1016/j.eswa.2016.10.024
18 https://doi.org/10.1016/j.eswa.2017.04.046
19 https://doi.org/10.1016/j.eswa.2017.09.058
20 https://doi.org/10.1016/j.eswa.2018.01.044
21 https://doi.org/10.1016/j.ins.2017.12.007
22 https://doi.org/10.1016/j.jnca.2013.04.010
23 https://doi.org/10.1016/j.jpdc.2017.12.008
24 https://doi.org/10.1016/j.knosys.2016.10.025
25 https://doi.org/10.1051/matecconf/201713900012
26 https://doi.org/10.1109/ic-nc.2010.21
27 https://doi.org/10.1109/isai.2016.0111
28 https://doi.org/10.1109/tnnls.2016.2514368
29 https://doi.org/10.1145/192844.192905
30 https://doi.org/10.1145/2554850.2555017
31 https://doi.org/10.1145/2911451.2911548
32 https://doi.org/10.1145/2939672.2939673
33 https://doi.org/10.1145/2988450.2988454
34 https://doi.org/10.1145/312624.312682
35 https://doi.org/10.1155/2013/869658
36 https://doi.org/10.1177/0954406215584395
37 https://doi.org/10.1177/1063293x16640319
38 https://doi.org/10.4108/eai.6-7-2017.152759
39 https://doi.org/10.7551/mitpress/4073.003.0005
40 schema:datePublished 2019-03-06
41 schema:datePublishedReg 2019-03-06
42 schema:description A knowledge push system as a proactive method of knowledge management, and is an effective way to push knowledge to designers in the product design process. Knowledge push can help to improve design efficiency and quality, but the knowledge pushed to designers is less applicable in engineering scenarios. To improve the quality of knowledge push, we propose the trust-aware and item-cluster strategies to extract the two nearest neighbors of the designers and the design knowledge. Next, we adapt a fusion model for the two nearest neighbors, which is solved based on the gradient descent algorithm. Finally, the rating prediction that the designer gives to the knowledge component is the decision point of the knowledge push system, where we propose our final hybrid knowledge push method. A knowledge push system of CNC machine tools design is used to confirm that our method outperforms the other widely adopted methods.
43 schema:genre research_article
44 schema:inLanguage en
45 schema:isAccessibleForFree false
46 schema:isPartOf sg:journal.1053619
47 schema:name A Hybrid Knowledge Push Method Based on Trust-Aware and Item-Cluster Oriented to Product Design
48 schema:pagination 1-19
49 schema:productId N956e6cbdbed64e75b309c583e4d45a7c
50 Nd8a1c17862154ddda1b467bcbf846e9a
51 Nfb2e0c62d4724c75940703735b65ca8e
52 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112587430
53 https://doi.org/10.1007/s00354-019-00053-3
54 schema:sdDatePublished 2019-04-11T11:10
55 schema:sdLicense https://scigraph.springernature.com/explorer/license/
56 schema:sdPublisher N41fb275729e14616b88ea51098ba4d62
57 schema:url https://link.springer.com/10.1007%2Fs00354-019-00053-3
58 sgo:license sg:explorer/license/
59 sgo:sdDataset articles
60 rdf:type schema:ScholarlyArticle
61 N162861c77072479cacd2bc0f85c36912 schema:affiliation https://www.grid.ac/institutes/grid.13402.34
62 schema:familyName Yi
63 schema:givenName Guodong
64 rdf:type schema:Person
65 N41fb275729e14616b88ea51098ba4d62 schema:name Springer Nature - SN SciGraph project
66 rdf:type schema:Organization
67 N4f96855480344bacb4827260a77a4d84 rdf:first Nc2832e5c547d439889f54af50b804811
68 rdf:rest Nf856498a20704cebb795e71713a51c53
69 N845215b05249454ca56f00533fce33d5 rdf:first Ncf1621ba71d24ca7a1ad4839094e882d
70 rdf:rest N4f96855480344bacb4827260a77a4d84
71 N956e6cbdbed64e75b309c583e4d45a7c schema:name readcube_id
72 schema:value b33c904a7b769c3db6e70eea39ba63a1ac4e58dc8454591338142992a2bd538a
73 rdf:type schema:PropertyValue
74 Nc2832e5c547d439889f54af50b804811 schema:affiliation https://www.grid.ac/institutes/grid.13402.34
75 schema:familyName Gu
76 schema:givenName Ye
77 rdf:type schema:Person
78 Ncf1621ba71d24ca7a1ad4839094e882d schema:affiliation https://www.grid.ac/institutes/grid.13402.34
79 schema:familyName Zhang
80 schema:givenName Shuyou
81 rdf:type schema:Person
82 Nd8a1c17862154ddda1b467bcbf846e9a schema:name dimensions_id
83 schema:value pub.1112587430
84 rdf:type schema:PropertyValue
85 Nf856498a20704cebb795e71713a51c53 rdf:first N162861c77072479cacd2bc0f85c36912
86 rdf:rest rdf:nil
87 Nfb2e0c62d4724c75940703735b65ca8e schema:name doi
88 schema:value 10.1007/s00354-019-00053-3
89 rdf:type schema:PropertyValue
90 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
91 schema:name Information and Computing Sciences
92 rdf:type schema:DefinedTerm
93 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
94 schema:name Information Systems
95 rdf:type schema:DefinedTerm
96 sg:journal.1053619 schema:issn 0288-3635
97 1882-7055
98 schema:name New Generation Computing
99 rdf:type schema:Periodical
100 sg:pub.10.1007/11600930_62 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011605328
101 https://doi.org/10.1007/11600930_62
102 rdf:type schema:CreativeWork
103 sg:pub.10.1007/978-3-319-61824-1_41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090239824
104 https://doi.org/10.1007/978-3-319-61824-1_41
105 rdf:type schema:CreativeWork
106 sg:pub.10.1007/s00170-009-2296-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040258287
107 https://doi.org/10.1007/s00170-009-2296-0
108 rdf:type schema:CreativeWork
109 sg:pub.10.1007/s00170-016-9813-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053411170
110 https://doi.org/10.1007/s00170-016-9813-8
111 rdf:type schema:CreativeWork
112 sg:pub.10.1007/s00354-007-0033-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030193939
113 https://doi.org/10.1007/s00354-007-0033-5
114 rdf:type schema:CreativeWork
115 sg:pub.10.1007/s00354-017-0022-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090804281
116 https://doi.org/10.1007/s00354-017-0022-2
117 rdf:type schema:CreativeWork
118 sg:pub.10.1007/s00354-018-0044-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106097626
119 https://doi.org/10.1007/s00354-018-0044-4
120 rdf:type schema:CreativeWork
121 sg:pub.10.1007/s00500-017-2720-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091306144
122 https://doi.org/10.1007/s00500-017-2720-6
123 rdf:type schema:CreativeWork
124 sg:pub.10.1007/s11432-016-5551-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014554932
125 https://doi.org/10.1007/s11432-016-5551-7
126 rdf:type schema:CreativeWork
127 sg:pub.10.1631/fitee.1700763 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103470119
128 https://doi.org/10.1631/fitee.1700763
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/b978-1-55860-377-6.50048-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002050789
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/j.amc.2014.06.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050498143
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/j.eswa.2009.03.059 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006032616
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/j.eswa.2016.10.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045367728
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/j.eswa.2017.04.046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085347824
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/j.eswa.2017.09.058 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091985650
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/j.eswa.2018.01.044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100740080
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/j.ins.2017.12.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099650220
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1016/j.jnca.2013.04.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041749522
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1016/j.jpdc.2017.12.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100152885
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1016/j.knosys.2016.10.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033765861
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1051/matecconf/201713900012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099610759
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1109/ic-nc.2010.21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094335882
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1109/isai.2016.0111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093384930
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1109/tnnls.2016.2514368 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061719094
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1145/192844.192905 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051044947
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1145/2554850.2555017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051284821
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1145/2911451.2911548 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030695334
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1145/2939672.2939673 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011682859
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1145/2988450.2988454 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026271373
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1145/312624.312682 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029340069
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1155/2013/869658 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024945343
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1177/0954406215584395 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063885000
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1177/1063293x16640319 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047513195
177 rdf:type schema:CreativeWork
178 https://doi.org/10.4108/eai.6-7-2017.152759 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090562897
179 rdf:type schema:CreativeWork
180 https://doi.org/10.7551/mitpress/4073.003.0005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110922941
181 rdf:type schema:CreativeWork
182 https://www.grid.ac/institutes/grid.13402.34 schema:alternateName Zhejiang University
183 schema:name State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, 310027, Hangzhou, China
184 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...