Understanding Metaphors Using Emotions View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-01

AUTHORS

Sunny Rai, Shampa Chakraverty, Devendra K. Tayal, Divyanshu Sharma, Ayush Garg

ABSTRACT

Metaphors convey unspoken emotions and perceptions by creatively applying an evocative concept from the source domain to illustrate some latent idea in the target domain. Prior research on nominal metaphor interpretation focused on identifying those properties of the source domain which are highly related to the target domain concepts to discover the most likely sense of the metaphor’s usage. In this paper, we bring forth a fresh perspective by observing that a metaphor is seldom without an emotion or sentiment; in fact, it is this very aspect which segregates it from its literal counterpart. We present an Emotion driven Metaphor Understanding system which assesses the affective dimensions of the source properties before assigning them as the most plausible sense in the context of the target domain. In our approach, we use the web as a knowledge source to identify properties of the source domain. We resolve the bottleneck of non-availability of informative emotion lexicons using pre-trained word2vec embeddings to extract the latent emotions in the source domain properties. Adopting an unsupervised learning approach on a dataset of nominal metaphors, we demonstrate that in comparison with a single emotionless interpretation, a multi-sense interpretation of a metaphor using the gamut of emotions is more likely to provide a realistic presentation of its purport. We further demonstrate that an emotion driven interpretation is often preferred over an interpretation sans emotion. The results clearly indicate that it is beneficial to apply emotions for refining the process of metaphor understanding. More... »

PAGES

1-23

References to SciGraph publications

  • 2000-06. Metaphor comprehension: A computational theory in BULLETIN OF THE PSYCHONOMIC SOCIETY
  • 2017. Metaphor Detection Using Fuzzy Rough Sets in ROUGH SETS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00354-018-0045-3

    DOI

    http://dx.doi.org/10.1007/s00354-018-0045-3

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1106929973


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1701", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Psychology", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/17", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Psychology and Cognitive Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Delhi", 
              "id": "https://www.grid.ac/institutes/grid.8195.5", 
              "name": [
                "Division of Computer Engineering, Netaji Subhas Institute of Technology, Delhi, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Rai", 
            "givenName": "Sunny", 
            "id": "sg:person.016604375203.60", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016604375203.60"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Delhi", 
              "id": "https://www.grid.ac/institutes/grid.8195.5", 
              "name": [
                "Division of Computer Engineering, Netaji Subhas Institute of Technology, Delhi, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chakraverty", 
            "givenName": "Shampa", 
            "id": "sg:person.016150204441.44", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016150204441.44"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Guru Gobind Singh Indraprastha University", 
              "id": "https://www.grid.ac/institutes/grid.411685.f", 
              "name": [
                "Department of Computer Science and Engineering, Indira Gandhi Delhi Technical University for Women, Delhi, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tayal", 
            "givenName": "Devendra K.", 
            "id": "sg:person.015771753070.91", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015771753070.91"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Delhi", 
              "id": "https://www.grid.ac/institutes/grid.8195.5", 
              "name": [
                "Division of Computer Engineering, Netaji Subhas Institute of Technology, Delhi, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sharma", 
            "givenName": "Divyanshu", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Delhi", 
              "id": "https://www.grid.ac/institutes/grid.8195.5", 
              "name": [
                "Division of Computer Engineering, Netaji Subhas Institute of Technology, Delhi, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Garg", 
            "givenName": "Ayush", 
            "id": "sg:person.011360725540.80", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011360725540.80"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1207/s15327868ms0204_2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001287448"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/219717.219748", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005662680"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.3758/bf03212981", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006974588", 
              "https://doi.org/10.3758/bf03212981"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.neuropsychologia.2015.10.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017921940"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1467-8640.2012.00460.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026968277"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.engappai.2015.10.014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032714183"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.neucom.2016.09.030", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045359171"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0304-422x(79)90021-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047938197"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.eswa.2014.09.011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051050495"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-60837-2_23", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1086147261", 
              "https://doi.org/10.1007/978-3-319-60837-2_23"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.18653/v1/w16-1103", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098653090"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3115/1599081.1599200", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1099206037"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3115/1118108.1118117", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1099237519"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3115/1118108.1118117", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1099237519"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-01", 
        "datePublishedReg": "2019-01-01", 
        "description": "Metaphors convey unspoken emotions and perceptions by creatively applying an evocative concept from the source domain to illustrate some latent idea in the target domain. Prior research on nominal metaphor interpretation focused on identifying those properties of the source domain which are highly related to the target domain concepts to discover the most likely sense of the metaphor\u2019s usage. In this paper, we bring forth a fresh perspective by observing that a metaphor is seldom without an emotion or sentiment; in fact, it is this very aspect which segregates it from its literal counterpart. We present an Emotion driven Metaphor Understanding system which assesses the affective dimensions of the source properties before assigning them as the most plausible sense in the context of the target domain. In our approach, we use the web as a knowledge source to identify properties of the source domain. We resolve the bottleneck of non-availability of informative emotion lexicons using pre-trained word2vec embeddings to extract the latent emotions in the source domain properties. Adopting an unsupervised learning approach on a dataset of nominal metaphors, we demonstrate that in comparison with a single emotionless interpretation, a multi-sense interpretation of a metaphor using the gamut of emotions is more likely to provide a realistic presentation of its purport. We further demonstrate that an emotion driven interpretation is often preferred over an interpretation sans emotion. The results clearly indicate that it is beneficial to apply emotions for refining the process of metaphor understanding.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s00354-018-0045-3", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1053619", 
            "issn": [
              "0288-3635", 
              "1882-7055"
            ], 
            "name": "New Generation Computing", 
            "type": "Periodical"
          }
        ], 
        "name": "Understanding Metaphors Using Emotions", 
        "pagination": "1-23", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "b6c172532dc94b0fc132b31ba51c5dd480d96c0658beb9c75aeb32bc2cacc881"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00354-018-0045-3"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1106929973"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00354-018-0045-3", 
          "https://app.dimensions.ai/details/publication/pub.1106929973"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T18:23", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8675_00000525.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2Fs00354-018-0045-3"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00354-018-0045-3'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00354-018-0045-3'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00354-018-0045-3'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00354-018-0045-3'


     

    This table displays all metadata directly associated to this object as RDF triples.

    126 TRIPLES      21 PREDICATES      38 URIs      17 LITERALS      5 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00354-018-0045-3 schema:about anzsrc-for:17
    2 anzsrc-for:1701
    3 schema:author N2f4a52c82c9a4494ad661216394cda50
    4 schema:citation sg:pub.10.1007/978-3-319-60837-2_23
    5 sg:pub.10.3758/bf03212981
    6 https://doi.org/10.1016/0304-422x(79)90021-4
    7 https://doi.org/10.1016/j.engappai.2015.10.014
    8 https://doi.org/10.1016/j.eswa.2014.09.011
    9 https://doi.org/10.1016/j.neucom.2016.09.030
    10 https://doi.org/10.1016/j.neuropsychologia.2015.10.003
    11 https://doi.org/10.1111/j.1467-8640.2012.00460.x
    12 https://doi.org/10.1145/219717.219748
    13 https://doi.org/10.1207/s15327868ms0204_2
    14 https://doi.org/10.18653/v1/w16-1103
    15 https://doi.org/10.3115/1118108.1118117
    16 https://doi.org/10.3115/1599081.1599200
    17 schema:datePublished 2019-01
    18 schema:datePublishedReg 2019-01-01
    19 schema:description Metaphors convey unspoken emotions and perceptions by creatively applying an evocative concept from the source domain to illustrate some latent idea in the target domain. Prior research on nominal metaphor interpretation focused on identifying those properties of the source domain which are highly related to the target domain concepts to discover the most likely sense of the metaphor’s usage. In this paper, we bring forth a fresh perspective by observing that a metaphor is seldom without an emotion or sentiment; in fact, it is this very aspect which segregates it from its literal counterpart. We present an Emotion driven Metaphor Understanding system which assesses the affective dimensions of the source properties before assigning them as the most plausible sense in the context of the target domain. In our approach, we use the web as a knowledge source to identify properties of the source domain. We resolve the bottleneck of non-availability of informative emotion lexicons using pre-trained word2vec embeddings to extract the latent emotions in the source domain properties. Adopting an unsupervised learning approach on a dataset of nominal metaphors, we demonstrate that in comparison with a single emotionless interpretation, a multi-sense interpretation of a metaphor using the gamut of emotions is more likely to provide a realistic presentation of its purport. We further demonstrate that an emotion driven interpretation is often preferred over an interpretation sans emotion. The results clearly indicate that it is beneficial to apply emotions for refining the process of metaphor understanding.
    20 schema:genre research_article
    21 schema:inLanguage en
    22 schema:isAccessibleForFree false
    23 schema:isPartOf sg:journal.1053619
    24 schema:name Understanding Metaphors Using Emotions
    25 schema:pagination 1-23
    26 schema:productId N27ee483ec1de48d2b7e9f00d1f2fa8d3
    27 Nd817c701072e4a37a844419cc7207d1d
    28 Nf30bff5d454149468f3cb38ba89ea925
    29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106929973
    30 https://doi.org/10.1007/s00354-018-0045-3
    31 schema:sdDatePublished 2019-04-10T18:23
    32 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    33 schema:sdPublisher N66cd12742a6d4c858f123530b6282e77
    34 schema:url http://link.springer.com/10.1007%2Fs00354-018-0045-3
    35 sgo:license sg:explorer/license/
    36 sgo:sdDataset articles
    37 rdf:type schema:ScholarlyArticle
    38 N0e2f97c50af94130b5f30b67d650e986 rdf:first sg:person.016150204441.44
    39 rdf:rest N1159d1d166814b039bc0da74849541e5
    40 N0e96f5e15f5746c2aaebcfcc05f2c0e8 schema:affiliation https://www.grid.ac/institutes/grid.8195.5
    41 schema:familyName Sharma
    42 schema:givenName Divyanshu
    43 rdf:type schema:Person
    44 N1159d1d166814b039bc0da74849541e5 rdf:first sg:person.015771753070.91
    45 rdf:rest N27035840ccaf416a8485265f8e5ca71b
    46 N27035840ccaf416a8485265f8e5ca71b rdf:first N0e96f5e15f5746c2aaebcfcc05f2c0e8
    47 rdf:rest N5128a79f3dfe42fea447cd21a5c34c5f
    48 N27ee483ec1de48d2b7e9f00d1f2fa8d3 schema:name doi
    49 schema:value 10.1007/s00354-018-0045-3
    50 rdf:type schema:PropertyValue
    51 N2f4a52c82c9a4494ad661216394cda50 rdf:first sg:person.016604375203.60
    52 rdf:rest N0e2f97c50af94130b5f30b67d650e986
    53 N5128a79f3dfe42fea447cd21a5c34c5f rdf:first sg:person.011360725540.80
    54 rdf:rest rdf:nil
    55 N66cd12742a6d4c858f123530b6282e77 schema:name Springer Nature - SN SciGraph project
    56 rdf:type schema:Organization
    57 Nd817c701072e4a37a844419cc7207d1d schema:name readcube_id
    58 schema:value b6c172532dc94b0fc132b31ba51c5dd480d96c0658beb9c75aeb32bc2cacc881
    59 rdf:type schema:PropertyValue
    60 Nf30bff5d454149468f3cb38ba89ea925 schema:name dimensions_id
    61 schema:value pub.1106929973
    62 rdf:type schema:PropertyValue
    63 anzsrc-for:17 schema:inDefinedTermSet anzsrc-for:
    64 schema:name Psychology and Cognitive Sciences
    65 rdf:type schema:DefinedTerm
    66 anzsrc-for:1701 schema:inDefinedTermSet anzsrc-for:
    67 schema:name Psychology
    68 rdf:type schema:DefinedTerm
    69 sg:journal.1053619 schema:issn 0288-3635
    70 1882-7055
    71 schema:name New Generation Computing
    72 rdf:type schema:Periodical
    73 sg:person.011360725540.80 schema:affiliation https://www.grid.ac/institutes/grid.8195.5
    74 schema:familyName Garg
    75 schema:givenName Ayush
    76 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011360725540.80
    77 rdf:type schema:Person
    78 sg:person.015771753070.91 schema:affiliation https://www.grid.ac/institutes/grid.411685.f
    79 schema:familyName Tayal
    80 schema:givenName Devendra K.
    81 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015771753070.91
    82 rdf:type schema:Person
    83 sg:person.016150204441.44 schema:affiliation https://www.grid.ac/institutes/grid.8195.5
    84 schema:familyName Chakraverty
    85 schema:givenName Shampa
    86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016150204441.44
    87 rdf:type schema:Person
    88 sg:person.016604375203.60 schema:affiliation https://www.grid.ac/institutes/grid.8195.5
    89 schema:familyName Rai
    90 schema:givenName Sunny
    91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016604375203.60
    92 rdf:type schema:Person
    93 sg:pub.10.1007/978-3-319-60837-2_23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086147261
    94 https://doi.org/10.1007/978-3-319-60837-2_23
    95 rdf:type schema:CreativeWork
    96 sg:pub.10.3758/bf03212981 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006974588
    97 https://doi.org/10.3758/bf03212981
    98 rdf:type schema:CreativeWork
    99 https://doi.org/10.1016/0304-422x(79)90021-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047938197
    100 rdf:type schema:CreativeWork
    101 https://doi.org/10.1016/j.engappai.2015.10.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032714183
    102 rdf:type schema:CreativeWork
    103 https://doi.org/10.1016/j.eswa.2014.09.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051050495
    104 rdf:type schema:CreativeWork
    105 https://doi.org/10.1016/j.neucom.2016.09.030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045359171
    106 rdf:type schema:CreativeWork
    107 https://doi.org/10.1016/j.neuropsychologia.2015.10.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017921940
    108 rdf:type schema:CreativeWork
    109 https://doi.org/10.1111/j.1467-8640.2012.00460.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1026968277
    110 rdf:type schema:CreativeWork
    111 https://doi.org/10.1145/219717.219748 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005662680
    112 rdf:type schema:CreativeWork
    113 https://doi.org/10.1207/s15327868ms0204_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001287448
    114 rdf:type schema:CreativeWork
    115 https://doi.org/10.18653/v1/w16-1103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098653090
    116 rdf:type schema:CreativeWork
    117 https://doi.org/10.3115/1118108.1118117 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099237519
    118 rdf:type schema:CreativeWork
    119 https://doi.org/10.3115/1599081.1599200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099206037
    120 rdf:type schema:CreativeWork
    121 https://www.grid.ac/institutes/grid.411685.f schema:alternateName Guru Gobind Singh Indraprastha University
    122 schema:name Department of Computer Science and Engineering, Indira Gandhi Delhi Technical University for Women, Delhi, India
    123 rdf:type schema:Organization
    124 https://www.grid.ac/institutes/grid.8195.5 schema:alternateName University of Delhi
    125 schema:name Division of Computer Engineering, Netaji Subhas Institute of Technology, Delhi, India
    126 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...