High Accuracy-priority Rule Extraction for Reconciling Accuracy and Interpretability in Credit Scoring View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-10

AUTHORS

Yoichi Hayashi, Tatsuhiro Oishi

ABSTRACT

Accuracy and interpretability are two perspectives that are difficult to balance; this is referred to as the accuracy-interpretability dilemma. If credit models gain interpretability, they lose accuracy, and vice versa. Researchers continue to develop an array of very complicated predictive models; however, the finance industry needs interpretable models that can be used in actual practice. Especially, advanced sequential ensembles are seldom considered in credit scoring. Therefore, it is worthwhile to explore new rule extraction methods capable of building sequential ensemble classifiers that are effective for credit scoring. To enhance the accuracy and interpretability of extracted rules, we extend continuous recursive-rule extraction (continuous Re-RX) to a high accuracy-priority rule extraction method referred to as continuous Re-RX with J48graft. Continuous Re-RX with J48graft uses a recursive approach called subdivision. This approach consists of a backpropagation neural network, pruning, and a J48graft decision tree for mixed datasets (those containing discrete and continuous attributes) to construct a high accuracy-priority rule extraction method. Compared with previous rule extraction methods for Australian- and German-based datasets, continuous Re-RX with J48graft achieved the highest accuracies, 88.4 and 79.0%, respectively, using tenfold cross validation (CV) and the Friedman and Bonferroni–Dunn tests, and 87.82 and 78.4%, respectively, using 10 runs of tenfold CV, with the best Friedman score. We also demonstrate how continuous Re-RX with J48graft overcomes the accuracy-interpretability dilemma based on its performance. We believe that continuous Re-RX with J48graft can help overcome the accuracy-interpretability dilemma for transparency of Big Data in financial situations and for industrial applications. More... »

PAGES

393-418

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00354-018-0043-5

DOI

http://dx.doi.org/10.1007/s00354-018-0043-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1106131274


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Meiji University", 
          "id": "https://www.grid.ac/institutes/grid.411764.1", 
          "name": [
            "Department of Computer Science, Meiji University, 214-8571, Kawasaki, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hayashi", 
        "givenName": "Yoichi", 
        "id": "sg:person.01025311063.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01025311063.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Meiji University", 
          "id": "https://www.grid.ac/institutes/grid.411764.1", 
          "name": [
            "Department of Computer Science, Meiji University, 214-8571, Kawasaki, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Oishi", 
        "givenName": "Tatsuhiro", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.knosys.2011.06.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000820717"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00500-008-0305-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003176598", 
          "https://doi.org/10.1007/s00500-008-0305-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00500-008-0305-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003176598", 
          "https://doi.org/10.1007/s00500-008-0305-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.orp.2016.08.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003301750"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.asoc.2015.11.037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003805754"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.knosys.2016.04.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005877400"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1057/jors.2012.120", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006278457", 
          "https://doi.org/10.1057/jors.2012.120"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/jaiscr-2016-0004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006496649"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.imu.2015.12.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006604896"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-19222-2_23", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007641306", 
          "https://doi.org/10.1007/978-3-319-19222-2_23"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00500-012-0936-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009452530", 
          "https://doi.org/10.1007/s00500-012-0936-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10844-014-0333-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010043170", 
          "https://doi.org/10.1007/s10844-014-0333-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10844-014-0333-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010043170", 
          "https://doi.org/10.1007/s10844-014-0333-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2014.10.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010247658"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1162/neco.1997.9.1.185", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012519750"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2013.12.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012533966"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2007.09.038", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013353429"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2006.04.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015051793"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2015.02.042", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015856094"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2008.01.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016104603"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.imu.2016.10.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016671328"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0950-7051(96)81920-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016984185"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2009.10.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017911637"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2015.06.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018928603"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2016.12.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019070543"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejor.2006.04.051", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019445570"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-45014-9_2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024069665", 
          "https://doi.org/10.1007/3-540-45014-9_2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-45014-9_2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024069665", 
          "https://doi.org/10.1007/3-540-45014-9_2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1009752403260", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028840786", 
          "https://doi.org/10.1023/a:1009752403260"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neunet.2008.01.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030241718"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.knosys.2012.04.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030353848"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.asoc.2011.11.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030549996"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0925-2312(97)00038-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031515242"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2009.05.059", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032911815"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.asoc.2009.08.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033883891"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0893-6080(89)90020-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034169987"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0893-6080(89)90020-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034169987"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2012.02.092", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034383328"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2007.05.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036662095"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2011.09.033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036863569"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.imu.2015.12.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038104540"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejor.2010.09.029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038291129"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10462-015-9434-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039531669", 
          "https://doi.org/10.1007/s10462-015-9434-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.knosys.2013.12.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039749732"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2005.01.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040482277"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.knosys.2012.11.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041850612"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2004.02.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042295363"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2012.03.033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043297172"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-9236(95)00033-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044911799"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.knosys.2011.06.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045013357"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11146-005-7013-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046584182", 
          "https://doi.org/10.1007/s11146-005-7013-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11146-005-7013-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046584182", 
          "https://doi.org/10.1007/s11146-005-7013-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2014.12.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048058589"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejor.2009.03.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048636032"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2011.06.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049362798"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.imu.2016.02.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053015835"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/72.935101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061219605"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnn.2007.908641", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061717303"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnnls.2015.2389037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061718764"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsmcb.2007.912079", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061796825"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0129065709002014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062899193"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0218213017500063", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062965084"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0219622017500055", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063001441"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/088342306000000060", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064390499"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1287/mnsc.49.3.312.12739", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064722328"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2017.02.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083761087"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.knosys.2017.06.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085937500"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/ijcnn.2015.7280387", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094335228"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2018/4084850", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100278757"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00354-018-0031-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100993572", 
          "https://doi.org/10.1007/s00354-018-0031-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1504/ijbic.2018.090070", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101305499"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-10", 
    "datePublishedReg": "2018-10-01", 
    "description": "Accuracy and interpretability are two perspectives that are difficult to balance; this is referred to as the accuracy-interpretability dilemma. If credit models gain interpretability, they lose accuracy, and vice versa. Researchers continue to develop an array of very complicated predictive models; however, the finance industry needs interpretable models that can be used in actual practice. Especially, advanced sequential ensembles are seldom considered in credit scoring. Therefore, it is worthwhile to explore new rule extraction methods capable of building sequential ensemble classifiers that are effective for credit scoring. To enhance the accuracy and interpretability of extracted rules, we extend continuous recursive-rule extraction (continuous Re-RX) to a high accuracy-priority rule extraction method referred to as continuous Re-RX with J48graft. Continuous Re-RX with J48graft uses a recursive approach called subdivision. This approach consists of a backpropagation neural network, pruning, and a J48graft decision tree for mixed datasets (those containing discrete and continuous attributes) to construct a high accuracy-priority rule extraction method. Compared with previous rule extraction methods for Australian- and German-based datasets, continuous Re-RX with J48graft achieved the highest accuracies, 88.4 and 79.0%, respectively, using tenfold cross validation (CV) and the Friedman and Bonferroni\u2013Dunn tests, and 87.82 and 78.4%, respectively, using 10 runs of tenfold CV, with the best Friedman score. We also demonstrate how continuous Re-RX with J48graft overcomes the accuracy-interpretability dilemma based on its performance. We believe that continuous Re-RX with J48graft can help overcome the accuracy-interpretability dilemma for transparency of Big Data in financial situations and for industrial applications.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00354-018-0043-5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1053619", 
        "issn": [
          "0288-3635", 
          "1882-7055"
        ], 
        "name": "New Generation Computing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "36"
      }
    ], 
    "name": "High Accuracy-priority Rule Extraction for Reconciling Accuracy and Interpretability in Credit Scoring", 
    "pagination": "393-418", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "4218d0da286ffcc45ff1254a4e3eac36aa053d13d544b1bfb05fd0cc6b9cd2b9"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00354-018-0043-5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1106131274"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00354-018-0043-5", 
      "https://app.dimensions.ai/details/publication/pub.1106131274"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T21:42", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000541.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00354-018-0043-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00354-018-0043-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00354-018-0043-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00354-018-0043-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00354-018-0043-5'


 

This table displays all metadata directly associated to this object as RDF triples.

275 TRIPLES      21 PREDICATES      93 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00354-018-0043-5 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N7afaab92b7c3412183dc7e367e5fe47f
4 schema:citation sg:pub.10.1007/3-540-45014-9_2
5 sg:pub.10.1007/978-3-319-19222-2_23
6 sg:pub.10.1007/s00354-018-0031-9
7 sg:pub.10.1007/s00500-008-0305-0
8 sg:pub.10.1007/s00500-012-0936-z
9 sg:pub.10.1007/s10462-015-9434-x
10 sg:pub.10.1007/s10844-014-0333-4
11 sg:pub.10.1007/s11146-005-7013-7
12 sg:pub.10.1023/a:1009752403260
13 sg:pub.10.1057/jors.2012.120
14 https://doi.org/10.1016/0167-9236(95)00033-x
15 https://doi.org/10.1016/0893-6080(89)90020-8
16 https://doi.org/10.1016/0950-7051(96)81920-4
17 https://doi.org/10.1016/j.asoc.2009.08.003
18 https://doi.org/10.1016/j.asoc.2011.11.002
19 https://doi.org/10.1016/j.asoc.2015.11.037
20 https://doi.org/10.1016/j.ejor.2006.04.051
21 https://doi.org/10.1016/j.ejor.2009.03.008
22 https://doi.org/10.1016/j.ejor.2010.09.029
23 https://doi.org/10.1016/j.eswa.2004.02.001
24 https://doi.org/10.1016/j.eswa.2005.01.003
25 https://doi.org/10.1016/j.eswa.2006.04.018
26 https://doi.org/10.1016/j.eswa.2007.05.019
27 https://doi.org/10.1016/j.eswa.2007.09.038
28 https://doi.org/10.1016/j.eswa.2008.01.018
29 https://doi.org/10.1016/j.eswa.2009.05.059
30 https://doi.org/10.1016/j.eswa.2009.10.012
31 https://doi.org/10.1016/j.eswa.2011.06.023
32 https://doi.org/10.1016/j.eswa.2011.09.033
33 https://doi.org/10.1016/j.eswa.2012.02.092
34 https://doi.org/10.1016/j.eswa.2012.03.033
35 https://doi.org/10.1016/j.eswa.2013.12.003
36 https://doi.org/10.1016/j.eswa.2014.10.016
37 https://doi.org/10.1016/j.eswa.2014.12.006
38 https://doi.org/10.1016/j.eswa.2015.02.042
39 https://doi.org/10.1016/j.eswa.2015.06.001
40 https://doi.org/10.1016/j.eswa.2016.12.020
41 https://doi.org/10.1016/j.eswa.2017.02.017
42 https://doi.org/10.1016/j.imu.2015.12.002
43 https://doi.org/10.1016/j.imu.2015.12.003
44 https://doi.org/10.1016/j.imu.2016.02.001
45 https://doi.org/10.1016/j.imu.2016.10.001
46 https://doi.org/10.1016/j.knosys.2011.06.008
47 https://doi.org/10.1016/j.knosys.2011.06.020
48 https://doi.org/10.1016/j.knosys.2012.04.004
49 https://doi.org/10.1016/j.knosys.2012.11.004
50 https://doi.org/10.1016/j.knosys.2013.12.006
51 https://doi.org/10.1016/j.knosys.2016.04.013
52 https://doi.org/10.1016/j.knosys.2017.06.011
53 https://doi.org/10.1016/j.neunet.2008.01.003
54 https://doi.org/10.1016/j.orp.2016.08.001
55 https://doi.org/10.1016/s0925-2312(97)00038-6
56 https://doi.org/10.1109/72.935101
57 https://doi.org/10.1109/ijcnn.2015.7280387
58 https://doi.org/10.1109/tnn.2007.908641
59 https://doi.org/10.1109/tnnls.2015.2389037
60 https://doi.org/10.1109/tsmcb.2007.912079
61 https://doi.org/10.1142/s0129065709002014
62 https://doi.org/10.1142/s0218213017500063
63 https://doi.org/10.1142/s0219622017500055
64 https://doi.org/10.1155/2018/4084850
65 https://doi.org/10.1162/neco.1997.9.1.185
66 https://doi.org/10.1214/088342306000000060
67 https://doi.org/10.1287/mnsc.49.3.312.12739
68 https://doi.org/10.1504/ijbic.2018.090070
69 https://doi.org/10.1515/jaiscr-2016-0004
70 schema:datePublished 2018-10
71 schema:datePublishedReg 2018-10-01
72 schema:description Accuracy and interpretability are two perspectives that are difficult to balance; this is referred to as the accuracy-interpretability dilemma. If credit models gain interpretability, they lose accuracy, and vice versa. Researchers continue to develop an array of very complicated predictive models; however, the finance industry needs interpretable models that can be used in actual practice. Especially, advanced sequential ensembles are seldom considered in credit scoring. Therefore, it is worthwhile to explore new rule extraction methods capable of building sequential ensemble classifiers that are effective for credit scoring. To enhance the accuracy and interpretability of extracted rules, we extend continuous recursive-rule extraction (continuous Re-RX) to a high accuracy-priority rule extraction method referred to as continuous Re-RX with J48graft. Continuous Re-RX with J48graft uses a recursive approach called subdivision. This approach consists of a backpropagation neural network, pruning, and a J48graft decision tree for mixed datasets (those containing discrete and continuous attributes) to construct a high accuracy-priority rule extraction method. Compared with previous rule extraction methods for Australian- and German-based datasets, continuous Re-RX with J48graft achieved the highest accuracies, 88.4 and 79.0%, respectively, using tenfold cross validation (CV) and the Friedman and Bonferroni–Dunn tests, and 87.82 and 78.4%, respectively, using 10 runs of tenfold CV, with the best Friedman score. We also demonstrate how continuous Re-RX with J48graft overcomes the accuracy-interpretability dilemma based on its performance. We believe that continuous Re-RX with J48graft can help overcome the accuracy-interpretability dilemma for transparency of Big Data in financial situations and for industrial applications.
73 schema:genre research_article
74 schema:inLanguage en
75 schema:isAccessibleForFree false
76 schema:isPartOf N19f1b6be2ec0479aabcc09c66eb792bf
77 N3c452a7f206348c3851b2397b1798ffa
78 sg:journal.1053619
79 schema:name High Accuracy-priority Rule Extraction for Reconciling Accuracy and Interpretability in Credit Scoring
80 schema:pagination 393-418
81 schema:productId N4fa3bd4815c84561b91a605ce836126b
82 N6ba1d85fa30344308ca1e4f423c9d5d2
83 N9d2f4b33d8bc4acbb07fee80a4a44b51
84 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106131274
85 https://doi.org/10.1007/s00354-018-0043-5
86 schema:sdDatePublished 2019-04-10T21:42
87 schema:sdLicense https://scigraph.springernature.com/explorer/license/
88 schema:sdPublisher Ndee3016096194a948ee42636c71114ac
89 schema:url https://link.springer.com/10.1007%2Fs00354-018-0043-5
90 sgo:license sg:explorer/license/
91 sgo:sdDataset articles
92 rdf:type schema:ScholarlyArticle
93 N19f1b6be2ec0479aabcc09c66eb792bf schema:issueNumber 4
94 rdf:type schema:PublicationIssue
95 N377342e387bc4fbe87b6a928b788d13b rdf:first Nde80840795594207ae45616885c666d0
96 rdf:rest rdf:nil
97 N3c452a7f206348c3851b2397b1798ffa schema:volumeNumber 36
98 rdf:type schema:PublicationVolume
99 N4fa3bd4815c84561b91a605ce836126b schema:name dimensions_id
100 schema:value pub.1106131274
101 rdf:type schema:PropertyValue
102 N6ba1d85fa30344308ca1e4f423c9d5d2 schema:name doi
103 schema:value 10.1007/s00354-018-0043-5
104 rdf:type schema:PropertyValue
105 N7afaab92b7c3412183dc7e367e5fe47f rdf:first sg:person.01025311063.14
106 rdf:rest N377342e387bc4fbe87b6a928b788d13b
107 N9d2f4b33d8bc4acbb07fee80a4a44b51 schema:name readcube_id
108 schema:value 4218d0da286ffcc45ff1254a4e3eac36aa053d13d544b1bfb05fd0cc6b9cd2b9
109 rdf:type schema:PropertyValue
110 Nde80840795594207ae45616885c666d0 schema:affiliation https://www.grid.ac/institutes/grid.411764.1
111 schema:familyName Oishi
112 schema:givenName Tatsuhiro
113 rdf:type schema:Person
114 Ndee3016096194a948ee42636c71114ac schema:name Springer Nature - SN SciGraph project
115 rdf:type schema:Organization
116 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
117 schema:name Information and Computing Sciences
118 rdf:type schema:DefinedTerm
119 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
120 schema:name Artificial Intelligence and Image Processing
121 rdf:type schema:DefinedTerm
122 sg:journal.1053619 schema:issn 0288-3635
123 1882-7055
124 schema:name New Generation Computing
125 rdf:type schema:Periodical
126 sg:person.01025311063.14 schema:affiliation https://www.grid.ac/institutes/grid.411764.1
127 schema:familyName Hayashi
128 schema:givenName Yoichi
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01025311063.14
130 rdf:type schema:Person
131 sg:pub.10.1007/3-540-45014-9_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024069665
132 https://doi.org/10.1007/3-540-45014-9_2
133 rdf:type schema:CreativeWork
134 sg:pub.10.1007/978-3-319-19222-2_23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007641306
135 https://doi.org/10.1007/978-3-319-19222-2_23
136 rdf:type schema:CreativeWork
137 sg:pub.10.1007/s00354-018-0031-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100993572
138 https://doi.org/10.1007/s00354-018-0031-9
139 rdf:type schema:CreativeWork
140 sg:pub.10.1007/s00500-008-0305-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003176598
141 https://doi.org/10.1007/s00500-008-0305-0
142 rdf:type schema:CreativeWork
143 sg:pub.10.1007/s00500-012-0936-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1009452530
144 https://doi.org/10.1007/s00500-012-0936-z
145 rdf:type schema:CreativeWork
146 sg:pub.10.1007/s10462-015-9434-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1039531669
147 https://doi.org/10.1007/s10462-015-9434-x
148 rdf:type schema:CreativeWork
149 sg:pub.10.1007/s10844-014-0333-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010043170
150 https://doi.org/10.1007/s10844-014-0333-4
151 rdf:type schema:CreativeWork
152 sg:pub.10.1007/s11146-005-7013-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046584182
153 https://doi.org/10.1007/s11146-005-7013-7
154 rdf:type schema:CreativeWork
155 sg:pub.10.1023/a:1009752403260 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028840786
156 https://doi.org/10.1023/a:1009752403260
157 rdf:type schema:CreativeWork
158 sg:pub.10.1057/jors.2012.120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006278457
159 https://doi.org/10.1057/jors.2012.120
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1016/0167-9236(95)00033-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1044911799
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1016/0893-6080(89)90020-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034169987
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1016/0950-7051(96)81920-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016984185
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1016/j.asoc.2009.08.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033883891
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1016/j.asoc.2011.11.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030549996
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1016/j.asoc.2015.11.037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003805754
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1016/j.ejor.2006.04.051 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019445570
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1016/j.ejor.2009.03.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048636032
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1016/j.ejor.2010.09.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038291129
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1016/j.eswa.2004.02.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042295363
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1016/j.eswa.2005.01.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040482277
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1016/j.eswa.2006.04.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015051793
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1016/j.eswa.2007.05.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036662095
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1016/j.eswa.2007.09.038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013353429
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1016/j.eswa.2008.01.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016104603
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1016/j.eswa.2009.05.059 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032911815
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1016/j.eswa.2009.10.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017911637
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1016/j.eswa.2011.06.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049362798
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1016/j.eswa.2011.09.033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036863569
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1016/j.eswa.2012.02.092 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034383328
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1016/j.eswa.2012.03.033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043297172
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1016/j.eswa.2013.12.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012533966
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1016/j.eswa.2014.10.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010247658
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1016/j.eswa.2014.12.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048058589
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1016/j.eswa.2015.02.042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015856094
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1016/j.eswa.2015.06.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018928603
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1016/j.eswa.2016.12.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019070543
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1016/j.eswa.2017.02.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083761087
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1016/j.imu.2015.12.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006604896
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1016/j.imu.2015.12.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038104540
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1016/j.imu.2016.02.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053015835
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1016/j.imu.2016.10.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016671328
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1016/j.knosys.2011.06.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045013357
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1016/j.knosys.2011.06.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000820717
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1016/j.knosys.2012.04.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030353848
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1016/j.knosys.2012.11.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041850612
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1016/j.knosys.2013.12.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039749732
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1016/j.knosys.2016.04.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005877400
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1016/j.knosys.2017.06.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085937500
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1016/j.neunet.2008.01.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030241718
240 rdf:type schema:CreativeWork
241 https://doi.org/10.1016/j.orp.2016.08.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003301750
242 rdf:type schema:CreativeWork
243 https://doi.org/10.1016/s0925-2312(97)00038-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031515242
244 rdf:type schema:CreativeWork
245 https://doi.org/10.1109/72.935101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061219605
246 rdf:type schema:CreativeWork
247 https://doi.org/10.1109/ijcnn.2015.7280387 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094335228
248 rdf:type schema:CreativeWork
249 https://doi.org/10.1109/tnn.2007.908641 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061717303
250 rdf:type schema:CreativeWork
251 https://doi.org/10.1109/tnnls.2015.2389037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061718764
252 rdf:type schema:CreativeWork
253 https://doi.org/10.1109/tsmcb.2007.912079 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061796825
254 rdf:type schema:CreativeWork
255 https://doi.org/10.1142/s0129065709002014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062899193
256 rdf:type schema:CreativeWork
257 https://doi.org/10.1142/s0218213017500063 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062965084
258 rdf:type schema:CreativeWork
259 https://doi.org/10.1142/s0219622017500055 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063001441
260 rdf:type schema:CreativeWork
261 https://doi.org/10.1155/2018/4084850 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100278757
262 rdf:type schema:CreativeWork
263 https://doi.org/10.1162/neco.1997.9.1.185 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012519750
264 rdf:type schema:CreativeWork
265 https://doi.org/10.1214/088342306000000060 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064390499
266 rdf:type schema:CreativeWork
267 https://doi.org/10.1287/mnsc.49.3.312.12739 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064722328
268 rdf:type schema:CreativeWork
269 https://doi.org/10.1504/ijbic.2018.090070 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101305499
270 rdf:type schema:CreativeWork
271 https://doi.org/10.1515/jaiscr-2016-0004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006496649
272 rdf:type schema:CreativeWork
273 https://www.grid.ac/institutes/grid.411764.1 schema:alternateName Meiji University
274 schema:name Department of Computer Science, Meiji University, 214-8571, Kawasaki, Japan
275 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...