A Hybrid Model for Simulating Crowd Evacuation View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2013-07

AUTHORS

Muzhou Xiong, Shanyu Tang, Dan Zhao

ABSTRACT

Macroscopic and microscopic models are typical approaches for simulating crowd behaviour and movement to simulate crowd and pedestrian movement, respectively. However, the two models are unlikely to address the issues beyond their modelling targets (i.e., pedestrian movement for microscopic models and crowd movement for macroscopic models). In order to solve such problem, we propose a hybrid model integrating macroscopic model into microscopic model, which is capable of taking into account issues both from crowd movement tendency and individual diversity to simulate crowd evacuation. In each simulation time step, the macroscopic model is executed first and generates a course-grain simulation result depicting the crowd movement, which directs microscopic model for goal selection and path planning to generate a fine-grain simulation result. In the mean time, different level-of-detail simulation results can also be obtained due to the proposed model containing two complete models. A synchronization mechanism is proposed to convey simulation results from one model to the other one. The simulation results via case study indicate the proposed model can simulate the crowd and agent behaviour in dynamic environments, and the simulation cost is proved to be efficient. More... »

PAGES

211-235

References to SciGraph publications

  • 2011-07-20. A Hybrid Model for Simulating Human Crowd in PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON HUMAN-CENTRIC COMPUTING 2011 AND EMBEDDED AND MULTIMEDIA COMPUTING 2011
  • 1997. A Model of Human Crowd Behavior : Group Inter-Relationship and Collision Detection Analysis in COMPUTER ANIMATION AND SIMULATION ’97
  • 1997-03. Group Behaviors for Systems with Significant Dynamics in AUTONOMOUS ROBOTS
  • 2000-09. Simulating dynamical features of escape panic in NATURE
  • 2002. CA Approach to Collective Phenomena in Pedestrian Dynamics in CELLULAR AUTOMATA
  • 2006-10. High Order Fast Sweeping Methods for Static Hamilton–Jacobi Equations in JOURNAL OF SCIENTIFIC COMPUTING
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00354-013-0304-2

    DOI

    http://dx.doi.org/10.1007/s00354-013-0304-2

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1040080957


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "China University of Geosciences", 
              "id": "https://www.grid.ac/institutes/grid.162107.3", 
              "name": [
                "School of Computer Science, China University of Geosciences, 430074, Wuhan, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Xiong", 
            "givenName": "Muzhou", 
            "id": "sg:person.0654007225.69", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0654007225.69"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "China University of Geosciences", 
              "id": "https://www.grid.ac/institutes/grid.162107.3", 
              "name": [
                "School of Computer Science, China University of Geosciences, 430074, Wuhan, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tang", 
            "givenName": "Shanyu", 
            "id": "sg:person.012252754331.24", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012252754331.24"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "China University of Geosciences", 
              "id": "https://www.grid.ac/institutes/grid.162107.3", 
              "name": [
                "School of Computer Science, China University of Geosciences, 430074, Wuhan, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhao", 
            "givenName": "Dan", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/s0378-4371(01)00141-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002330751"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0191-2615(01)00015-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002951546"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.physa.2006.06.023", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004739876"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/1751-8113/41/38/385104", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006957553"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/cav.105", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009349735"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/cav.105", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009349735"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-7091-6874-5_3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010815430", 
              "https://doi.org/10.1007/978-3-7091-6874-5_3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.physa.2007.02.040", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013428314"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10915-005-9014-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013752319", 
              "https://doi.org/10.1007/s10915-005-9014-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10915-005-9014-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013752319", 
              "https://doi.org/10.1007/s10915-005-9014-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-94-007-2105-0_13", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015498944", 
              "https://doi.org/10.1007/978-94-007-2105-0_13"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-94-007-2105-0_13", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015498944", 
              "https://doi.org/10.1007/978-94-007-2105-0_13"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/37402.37406", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017016808"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-45830-1_23", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017045304", 
              "https://doi.org/10.1007/3-540-45830-1_23"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35035023", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017951524", 
              "https://doi.org/10.1038/35035023"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35035023", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017951524", 
              "https://doi.org/10.1038/35035023"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/1179352.1142008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019719663"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1467-8659.2004.00783.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022706914"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.procs.2010.04.008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030949745"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0378-4371(02)00857-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033898968"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1008867321648", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040239128", 
              "https://doi.org/10.1023/a:1008867321648"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.trb.2008.06.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047470670"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.50.r5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060717454"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.50.r5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060717454"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tvcg.2010.33", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061813458"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/pads.2008.13", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093530456"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1061/40794(179)92", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1096705558"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1061/40794(179)92", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1096705558"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2013-07", 
        "datePublishedReg": "2013-07-01", 
        "description": "Macroscopic and microscopic models are typical approaches for simulating crowd behaviour and movement to simulate crowd and pedestrian movement, respectively. However, the two models are unlikely to address the issues beyond their modelling targets (i.e., pedestrian movement for microscopic models and crowd movement for macroscopic models). In order to solve such problem, we propose a hybrid model integrating macroscopic model into microscopic model, which is capable of taking into account issues both from crowd movement tendency and individual diversity to simulate crowd evacuation. In each simulation time step, the macroscopic model is executed first and generates a course-grain simulation result depicting the crowd movement, which directs microscopic model for goal selection and path planning to generate a fine-grain simulation result. In the mean time, different level-of-detail simulation results can also be obtained due to the proposed model containing two complete models. A synchronization mechanism is proposed to convey simulation results from one model to the other one. The simulation results via case study indicate the proposed model can simulate the crowd and agent behaviour in dynamic environments, and the simulation cost is proved to be efficient.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s00354-013-0304-2", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1053619", 
            "issn": [
              "0288-3635", 
              "1882-7055"
            ], 
            "name": "New Generation Computing", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "31"
          }
        ], 
        "name": "A Hybrid Model for Simulating Crowd Evacuation", 
        "pagination": "211-235", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "beee5efd46b7946196993275f3d57ff8920d127d4f58d42bbbc5146d1657486f"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00354-013-0304-2"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1040080957"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00354-013-0304-2", 
          "https://app.dimensions.ai/details/publication/pub.1040080957"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T01:11", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000533.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2Fs00354-013-0304-2"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00354-013-0304-2'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00354-013-0304-2'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00354-013-0304-2'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00354-013-0304-2'


     

    This table displays all metadata directly associated to this object as RDF triples.

    146 TRIPLES      21 PREDICATES      49 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00354-013-0304-2 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author N5a5d0e14b30f4d5faa4cd34d73b02faf
    4 schema:citation sg:pub.10.1007/3-540-45830-1_23
    5 sg:pub.10.1007/978-3-7091-6874-5_3
    6 sg:pub.10.1007/978-94-007-2105-0_13
    7 sg:pub.10.1007/s10915-005-9014-3
    8 sg:pub.10.1023/a:1008867321648
    9 sg:pub.10.1038/35035023
    10 https://doi.org/10.1002/cav.105
    11 https://doi.org/10.1016/j.physa.2006.06.023
    12 https://doi.org/10.1016/j.physa.2007.02.040
    13 https://doi.org/10.1016/j.procs.2010.04.008
    14 https://doi.org/10.1016/j.trb.2008.06.003
    15 https://doi.org/10.1016/s0191-2615(01)00015-7
    16 https://doi.org/10.1016/s0378-4371(01)00141-8
    17 https://doi.org/10.1016/s0378-4371(02)00857-9
    18 https://doi.org/10.1061/40794(179)92
    19 https://doi.org/10.1088/1751-8113/41/38/385104
    20 https://doi.org/10.1103/physreve.50.r5
    21 https://doi.org/10.1109/pads.2008.13
    22 https://doi.org/10.1109/tvcg.2010.33
    23 https://doi.org/10.1111/j.1467-8659.2004.00783.x
    24 https://doi.org/10.1145/1179352.1142008
    25 https://doi.org/10.1145/37402.37406
    26 schema:datePublished 2013-07
    27 schema:datePublishedReg 2013-07-01
    28 schema:description Macroscopic and microscopic models are typical approaches for simulating crowd behaviour and movement to simulate crowd and pedestrian movement, respectively. However, the two models are unlikely to address the issues beyond their modelling targets (i.e., pedestrian movement for microscopic models and crowd movement for macroscopic models). In order to solve such problem, we propose a hybrid model integrating macroscopic model into microscopic model, which is capable of taking into account issues both from crowd movement tendency and individual diversity to simulate crowd evacuation. In each simulation time step, the macroscopic model is executed first and generates a course-grain simulation result depicting the crowd movement, which directs microscopic model for goal selection and path planning to generate a fine-grain simulation result. In the mean time, different level-of-detail simulation results can also be obtained due to the proposed model containing two complete models. A synchronization mechanism is proposed to convey simulation results from one model to the other one. The simulation results via case study indicate the proposed model can simulate the crowd and agent behaviour in dynamic environments, and the simulation cost is proved to be efficient.
    29 schema:genre research_article
    30 schema:inLanguage en
    31 schema:isAccessibleForFree true
    32 schema:isPartOf N767bc9b5f370455ebf099f4a8ebecc98
    33 Nef41b51700c1463aa5690ab807de5fdb
    34 sg:journal.1053619
    35 schema:name A Hybrid Model for Simulating Crowd Evacuation
    36 schema:pagination 211-235
    37 schema:productId N39c42de5810a4abf8bc67052d940d57d
    38 N43f4886a88d845038ec4d0a756ba47d4
    39 N50325abe623a4496b571299d249d4677
    40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040080957
    41 https://doi.org/10.1007/s00354-013-0304-2
    42 schema:sdDatePublished 2019-04-11T01:11
    43 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    44 schema:sdPublisher Ne0c43569de76480eafdd11d225ed377d
    45 schema:url http://link.springer.com/10.1007%2Fs00354-013-0304-2
    46 sgo:license sg:explorer/license/
    47 sgo:sdDataset articles
    48 rdf:type schema:ScholarlyArticle
    49 N39c42de5810a4abf8bc67052d940d57d schema:name doi
    50 schema:value 10.1007/s00354-013-0304-2
    51 rdf:type schema:PropertyValue
    52 N43f4886a88d845038ec4d0a756ba47d4 schema:name readcube_id
    53 schema:value beee5efd46b7946196993275f3d57ff8920d127d4f58d42bbbc5146d1657486f
    54 rdf:type schema:PropertyValue
    55 N50325abe623a4496b571299d249d4677 schema:name dimensions_id
    56 schema:value pub.1040080957
    57 rdf:type schema:PropertyValue
    58 N5a5d0e14b30f4d5faa4cd34d73b02faf rdf:first sg:person.0654007225.69
    59 rdf:rest N84b96f2f7e894eae99e57c0b03a5447f
    60 N767bc9b5f370455ebf099f4a8ebecc98 schema:volumeNumber 31
    61 rdf:type schema:PublicationVolume
    62 N84978c18e5af412fad391b321dece81d schema:affiliation https://www.grid.ac/institutes/grid.162107.3
    63 schema:familyName Zhao
    64 schema:givenName Dan
    65 rdf:type schema:Person
    66 N84b96f2f7e894eae99e57c0b03a5447f rdf:first sg:person.012252754331.24
    67 rdf:rest N9a64ad580bfe494e81f6a6263ebf1348
    68 N9a64ad580bfe494e81f6a6263ebf1348 rdf:first N84978c18e5af412fad391b321dece81d
    69 rdf:rest rdf:nil
    70 Ne0c43569de76480eafdd11d225ed377d schema:name Springer Nature - SN SciGraph project
    71 rdf:type schema:Organization
    72 Nef41b51700c1463aa5690ab807de5fdb schema:issueNumber 3
    73 rdf:type schema:PublicationIssue
    74 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    75 schema:name Information and Computing Sciences
    76 rdf:type schema:DefinedTerm
    77 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    78 schema:name Artificial Intelligence and Image Processing
    79 rdf:type schema:DefinedTerm
    80 sg:journal.1053619 schema:issn 0288-3635
    81 1882-7055
    82 schema:name New Generation Computing
    83 rdf:type schema:Periodical
    84 sg:person.012252754331.24 schema:affiliation https://www.grid.ac/institutes/grid.162107.3
    85 schema:familyName Tang
    86 schema:givenName Shanyu
    87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012252754331.24
    88 rdf:type schema:Person
    89 sg:person.0654007225.69 schema:affiliation https://www.grid.ac/institutes/grid.162107.3
    90 schema:familyName Xiong
    91 schema:givenName Muzhou
    92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0654007225.69
    93 rdf:type schema:Person
    94 sg:pub.10.1007/3-540-45830-1_23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017045304
    95 https://doi.org/10.1007/3-540-45830-1_23
    96 rdf:type schema:CreativeWork
    97 sg:pub.10.1007/978-3-7091-6874-5_3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010815430
    98 https://doi.org/10.1007/978-3-7091-6874-5_3
    99 rdf:type schema:CreativeWork
    100 sg:pub.10.1007/978-94-007-2105-0_13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015498944
    101 https://doi.org/10.1007/978-94-007-2105-0_13
    102 rdf:type schema:CreativeWork
    103 sg:pub.10.1007/s10915-005-9014-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013752319
    104 https://doi.org/10.1007/s10915-005-9014-3
    105 rdf:type schema:CreativeWork
    106 sg:pub.10.1023/a:1008867321648 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040239128
    107 https://doi.org/10.1023/a:1008867321648
    108 rdf:type schema:CreativeWork
    109 sg:pub.10.1038/35035023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017951524
    110 https://doi.org/10.1038/35035023
    111 rdf:type schema:CreativeWork
    112 https://doi.org/10.1002/cav.105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009349735
    113 rdf:type schema:CreativeWork
    114 https://doi.org/10.1016/j.physa.2006.06.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004739876
    115 rdf:type schema:CreativeWork
    116 https://doi.org/10.1016/j.physa.2007.02.040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013428314
    117 rdf:type schema:CreativeWork
    118 https://doi.org/10.1016/j.procs.2010.04.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030949745
    119 rdf:type schema:CreativeWork
    120 https://doi.org/10.1016/j.trb.2008.06.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047470670
    121 rdf:type schema:CreativeWork
    122 https://doi.org/10.1016/s0191-2615(01)00015-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002951546
    123 rdf:type schema:CreativeWork
    124 https://doi.org/10.1016/s0378-4371(01)00141-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002330751
    125 rdf:type schema:CreativeWork
    126 https://doi.org/10.1016/s0378-4371(02)00857-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033898968
    127 rdf:type schema:CreativeWork
    128 https://doi.org/10.1061/40794(179)92 schema:sameAs https://app.dimensions.ai/details/publication/pub.1096705558
    129 rdf:type schema:CreativeWork
    130 https://doi.org/10.1088/1751-8113/41/38/385104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006957553
    131 rdf:type schema:CreativeWork
    132 https://doi.org/10.1103/physreve.50.r5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060717454
    133 rdf:type schema:CreativeWork
    134 https://doi.org/10.1109/pads.2008.13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093530456
    135 rdf:type schema:CreativeWork
    136 https://doi.org/10.1109/tvcg.2010.33 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061813458
    137 rdf:type schema:CreativeWork
    138 https://doi.org/10.1111/j.1467-8659.2004.00783.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1022706914
    139 rdf:type schema:CreativeWork
    140 https://doi.org/10.1145/1179352.1142008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019719663
    141 rdf:type schema:CreativeWork
    142 https://doi.org/10.1145/37402.37406 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017016808
    143 rdf:type schema:CreativeWork
    144 https://www.grid.ac/institutes/grid.162107.3 schema:alternateName China University of Geosciences
    145 schema:name School of Computer Science, China University of Geosciences, 430074, Wuhan, China
    146 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...