Image Annotation and Retrieval for Weakly Labeled Images Using Conceptual Learning View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2010-07

AUTHORS

Tatsuya Harada, Hideki Nakayama, Yasuo Kuniyoshi, Nobuyuki Otsu

ABSTRACT

One of the most promising new technologies for widespread application is image annotation and retrieval. Nevertheless, this task is very difficult to accomplish as target images differ significantly in appearance and belong to a wide variety of categories. In this paper, we propose a new image annotation and retrieval method for miscellaneous weakly labeled images, by combining higher-order local auto-correlation (HLAC) features and a framework of probabilistic canonical correlation analysis. The distance between images can be defined in the intrinsic space for annotation using conceptual learning of images and their labels. Because this intrinsic space is highly compressed compared to the image feature space, our method achieves both faster and more accurate image annotation and retrieval. The HLAC features are powerful global features with additive and position invariant properties. These properties work well with images, which have an arbitrary number of objects at arbitrary locations. The proposed method is shown to outperform existing methods using a standard benchmark dataset. More... »

PAGES

277-298

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00354-009-0090-z

DOI

http://dx.doi.org/10.1007/s00354-009-0090-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1027052539


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Tokyo", 
          "id": "https://www.grid.ac/institutes/grid.26999.3d", 
          "name": [
            "The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, 113-8656, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Harada", 
        "givenName": "Tatsuya", 
        "id": "sg:person.013240357031.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013240357031.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Tokyo", 
          "id": "https://www.grid.ac/institutes/grid.26999.3d", 
          "name": [
            "The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, 113-8656, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nakayama", 
        "givenName": "Hideki", 
        "id": "sg:person.015111344465.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015111344465.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Tokyo", 
          "id": "https://www.grid.ac/institutes/grid.26999.3d", 
          "name": [
            "The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, 113-8656, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kuniyoshi", 
        "givenName": "Yasuo", 
        "id": "sg:person.013372311431.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013372311431.62"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institute of Advanced Industrial Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.208504.b", 
          "name": [
            "The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, 113-8656, Tokyo, Japan", 
            "National Institute of Advanced Industrial Science and Technology, 1-1-1, Umezono, Tsukuba, 305-8568, Ibaraki, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Otsu", 
        "givenName": "Nobuyuki", 
        "id": "sg:person.013310442161.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013310442161.39"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.cviu.2005.09.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004784969"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-88690-7_24", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009765396", 
          "https://doi.org/10.1007/978-3-540-88690-7_24"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-88690-7_24", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009765396", 
          "https://doi.org/10.1007/978-3-540-88690-7_24"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1386352.1386367", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011659229"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11526346_54", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012604628", 
          "https://doi.org/10.1007/11526346_54"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11526346_54", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012604628", 
          "https://doi.org/10.1007/11526346_54"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1162/0899766042321814", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015021918"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1291233.1291380", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015097698"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-89796-5_62", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026145049", 
          "https://doi.org/10.1007/978-3-540-89796-5_62"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-89796-5_62", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026145049", 
          "https://doi.org/10.1007/978-3-540-89796-5_62"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1027527.1027680", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026805249"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1282280.1282340", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033635059"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-27814-6_9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037880900", 
          "https://doi.org/10.1007/978-3-540-27814-6_9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-27814-6_9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037880900", 
          "https://doi.org/10.1007/978-3-540-27814-6_9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/860435.860460", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038991414"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-47979-1_7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040055518", 
          "https://doi.org/10.1007/3-540-47979-1_7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11811305_75", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052385440", 
          "https://doi.org/10.1007/11811305_75"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11811305_75", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052385440", 
          "https://doi.org/10.1007/11811305_75"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/860435.860459", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053524475"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/t-c.1971.223390", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061455564"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tcsvt.2009.2017400", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061575353"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.2007.61", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061743352"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icpr.1992.201616", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086369738"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2004.383", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094251884"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2006.68", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094512911"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2005.164", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094726175"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iccv.2007.4408839", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094813579"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2004.1315274", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095228808"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-07", 
    "datePublishedReg": "2010-07-01", 
    "description": "One of the most promising new technologies for widespread application is image annotation and retrieval. Nevertheless, this task is very difficult to accomplish as target images differ significantly in appearance and belong to a wide variety of categories. In this paper, we propose a new image annotation and retrieval method for miscellaneous weakly labeled images, by combining higher-order local auto-correlation (HLAC) features and a framework of probabilistic canonical correlation analysis. The distance between images can be defined in the intrinsic space for annotation using conceptual learning of images and their labels. Because this intrinsic space is highly compressed compared to the image feature space, our method achieves both faster and more accurate image annotation and retrieval. The HLAC features are powerful global features with additive and position invariant properties. These properties work well with images, which have an arbitrary number of objects at arbitrary locations. The proposed method is shown to outperform existing methods using a standard benchmark dataset.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00354-009-0090-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1053619", 
        "issn": [
          "0288-3635", 
          "1882-7055"
        ], 
        "name": "New Generation Computing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "28"
      }
    ], 
    "name": "Image Annotation and Retrieval for Weakly Labeled Images Using Conceptual Learning", 
    "pagination": "277-298", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "80df30488624f6f4a7329a736ee9903af7e1ace9f503bee79b6cb618c513bca4"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00354-009-0090-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1027052539"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00354-009-0090-z", 
      "https://app.dimensions.ai/details/publication/pub.1027052539"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:50", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000350_0000000350/records_77581_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs00354-009-0090-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00354-009-0090-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00354-009-0090-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00354-009-0090-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00354-009-0090-z'


 

This table displays all metadata directly associated to this object as RDF triples.

161 TRIPLES      21 PREDICATES      50 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00354-009-0090-z schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N92fd41acb2b54af3804190a7a1acc44c
4 schema:citation sg:pub.10.1007/11526346_54
5 sg:pub.10.1007/11811305_75
6 sg:pub.10.1007/3-540-47979-1_7
7 sg:pub.10.1007/978-3-540-27814-6_9
8 sg:pub.10.1007/978-3-540-88690-7_24
9 sg:pub.10.1007/978-3-540-89796-5_62
10 https://doi.org/10.1016/j.cviu.2005.09.012
11 https://doi.org/10.1109/cvpr.2004.1315274
12 https://doi.org/10.1109/cvpr.2004.383
13 https://doi.org/10.1109/cvpr.2005.164
14 https://doi.org/10.1109/cvpr.2006.68
15 https://doi.org/10.1109/iccv.2007.4408839
16 https://doi.org/10.1109/icpr.1992.201616
17 https://doi.org/10.1109/t-c.1971.223390
18 https://doi.org/10.1109/tcsvt.2009.2017400
19 https://doi.org/10.1109/tpami.2007.61
20 https://doi.org/10.1145/1027527.1027680
21 https://doi.org/10.1145/1282280.1282340
22 https://doi.org/10.1145/1291233.1291380
23 https://doi.org/10.1145/1386352.1386367
24 https://doi.org/10.1145/860435.860459
25 https://doi.org/10.1145/860435.860460
26 https://doi.org/10.1162/0899766042321814
27 schema:datePublished 2010-07
28 schema:datePublishedReg 2010-07-01
29 schema:description One of the most promising new technologies for widespread application is image annotation and retrieval. Nevertheless, this task is very difficult to accomplish as target images differ significantly in appearance and belong to a wide variety of categories. In this paper, we propose a new image annotation and retrieval method for miscellaneous weakly labeled images, by combining higher-order local auto-correlation (HLAC) features and a framework of probabilistic canonical correlation analysis. The distance between images can be defined in the intrinsic space for annotation using conceptual learning of images and their labels. Because this intrinsic space is highly compressed compared to the image feature space, our method achieves both faster and more accurate image annotation and retrieval. The HLAC features are powerful global features with additive and position invariant properties. These properties work well with images, which have an arbitrary number of objects at arbitrary locations. The proposed method is shown to outperform existing methods using a standard benchmark dataset.
30 schema:genre research_article
31 schema:inLanguage en
32 schema:isAccessibleForFree false
33 schema:isPartOf Nb436c6ccf46549b2ab76ed5b36f86980
34 Nbbbaf507ef7b49e8a9a3ffea15e503e1
35 sg:journal.1053619
36 schema:name Image Annotation and Retrieval for Weakly Labeled Images Using Conceptual Learning
37 schema:pagination 277-298
38 schema:productId N4ec936fb9c01477581166f2470acea1b
39 N7571dae1b69446b4a0f36224adce6b03
40 Nb42e064ce4014bb2a3ac031d6cb8a279
41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027052539
42 https://doi.org/10.1007/s00354-009-0090-z
43 schema:sdDatePublished 2019-04-11T10:50
44 schema:sdLicense https://scigraph.springernature.com/explorer/license/
45 schema:sdPublisher N10f1b6eef8c34733904dc256ef200750
46 schema:url http://link.springer.com/10.1007%2Fs00354-009-0090-z
47 sgo:license sg:explorer/license/
48 sgo:sdDataset articles
49 rdf:type schema:ScholarlyArticle
50 N10f1b6eef8c34733904dc256ef200750 schema:name Springer Nature - SN SciGraph project
51 rdf:type schema:Organization
52 N2da58920c56b448894cd4104f3486a04 rdf:first sg:person.015111344465.40
53 rdf:rest N5c57fd1fef1d44e5bc99708f11d88227
54 N4ec936fb9c01477581166f2470acea1b schema:name readcube_id
55 schema:value 80df30488624f6f4a7329a736ee9903af7e1ace9f503bee79b6cb618c513bca4
56 rdf:type schema:PropertyValue
57 N5c57fd1fef1d44e5bc99708f11d88227 rdf:first sg:person.013372311431.62
58 rdf:rest N5ec04b1e99e741ea97f8caf3fe0d96de
59 N5ec04b1e99e741ea97f8caf3fe0d96de rdf:first sg:person.013310442161.39
60 rdf:rest rdf:nil
61 N7571dae1b69446b4a0f36224adce6b03 schema:name doi
62 schema:value 10.1007/s00354-009-0090-z
63 rdf:type schema:PropertyValue
64 N92fd41acb2b54af3804190a7a1acc44c rdf:first sg:person.013240357031.31
65 rdf:rest N2da58920c56b448894cd4104f3486a04
66 Nb42e064ce4014bb2a3ac031d6cb8a279 schema:name dimensions_id
67 schema:value pub.1027052539
68 rdf:type schema:PropertyValue
69 Nb436c6ccf46549b2ab76ed5b36f86980 schema:volumeNumber 28
70 rdf:type schema:PublicationVolume
71 Nbbbaf507ef7b49e8a9a3ffea15e503e1 schema:issueNumber 3
72 rdf:type schema:PublicationIssue
73 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
74 schema:name Information and Computing Sciences
75 rdf:type schema:DefinedTerm
76 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
77 schema:name Artificial Intelligence and Image Processing
78 rdf:type schema:DefinedTerm
79 sg:journal.1053619 schema:issn 0288-3635
80 1882-7055
81 schema:name New Generation Computing
82 rdf:type schema:Periodical
83 sg:person.013240357031.31 schema:affiliation https://www.grid.ac/institutes/grid.26999.3d
84 schema:familyName Harada
85 schema:givenName Tatsuya
86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013240357031.31
87 rdf:type schema:Person
88 sg:person.013310442161.39 schema:affiliation https://www.grid.ac/institutes/grid.208504.b
89 schema:familyName Otsu
90 schema:givenName Nobuyuki
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013310442161.39
92 rdf:type schema:Person
93 sg:person.013372311431.62 schema:affiliation https://www.grid.ac/institutes/grid.26999.3d
94 schema:familyName Kuniyoshi
95 schema:givenName Yasuo
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013372311431.62
97 rdf:type schema:Person
98 sg:person.015111344465.40 schema:affiliation https://www.grid.ac/institutes/grid.26999.3d
99 schema:familyName Nakayama
100 schema:givenName Hideki
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015111344465.40
102 rdf:type schema:Person
103 sg:pub.10.1007/11526346_54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012604628
104 https://doi.org/10.1007/11526346_54
105 rdf:type schema:CreativeWork
106 sg:pub.10.1007/11811305_75 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052385440
107 https://doi.org/10.1007/11811305_75
108 rdf:type schema:CreativeWork
109 sg:pub.10.1007/3-540-47979-1_7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040055518
110 https://doi.org/10.1007/3-540-47979-1_7
111 rdf:type schema:CreativeWork
112 sg:pub.10.1007/978-3-540-27814-6_9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037880900
113 https://doi.org/10.1007/978-3-540-27814-6_9
114 rdf:type schema:CreativeWork
115 sg:pub.10.1007/978-3-540-88690-7_24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009765396
116 https://doi.org/10.1007/978-3-540-88690-7_24
117 rdf:type schema:CreativeWork
118 sg:pub.10.1007/978-3-540-89796-5_62 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026145049
119 https://doi.org/10.1007/978-3-540-89796-5_62
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1016/j.cviu.2005.09.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004784969
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1109/cvpr.2004.1315274 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095228808
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1109/cvpr.2004.383 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094251884
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1109/cvpr.2005.164 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094726175
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1109/cvpr.2006.68 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094512911
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1109/iccv.2007.4408839 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094813579
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1109/icpr.1992.201616 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086369738
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1109/t-c.1971.223390 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061455564
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1109/tcsvt.2009.2017400 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061575353
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1109/tpami.2007.61 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061743352
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1145/1027527.1027680 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026805249
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1145/1282280.1282340 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033635059
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1145/1291233.1291380 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015097698
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1145/1386352.1386367 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011659229
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1145/860435.860459 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053524475
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1145/860435.860460 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038991414
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1162/0899766042321814 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015021918
154 rdf:type schema:CreativeWork
155 https://www.grid.ac/institutes/grid.208504.b schema:alternateName National Institute of Advanced Industrial Science and Technology
156 schema:name National Institute of Advanced Industrial Science and Technology, 1-1-1, Umezono, Tsukuba, 305-8568, Ibaraki, Japan
157 The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, 113-8656, Tokyo, Japan
158 rdf:type schema:Organization
159 https://www.grid.ac/institutes/grid.26999.3d schema:alternateName University of Tokyo
160 schema:name The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, 113-8656, Tokyo, Japan
161 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...