Dual hologram shearing interference technique for wind tunnel flow fields testing View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1997-08

AUTHORS

G. Toker, D. Levin, J. Stricker

ABSTRACT

A novel optical diagnostic technique, dual hologram shearing interferometry, for measuring density gradients of different phase objects is proposed and demonstrated. The lateral shearing is achieved by using a phase grating. A holographic interferometer has been developed and designed on the base of a single pass Z type conventional schlieren device. The interferometer’s scheme is insensitive to acoustical disturbances, similarly to the conventional schlieren layout, and is capable of recording holograms with a continuous wave laser during the wind tunnel run.The features of the technique make it tolerant to both the temporal coherence of the laser light source and to the relatively low, schlieren quality optical windows of the wind tunnel’s test section. The obtained reconstructed lateral shearing interferograms with a large region of overlap have high contrast and may have an arbitrary orientation and/or spacing of the background interference fringes.It is believed that the proposed approach will become a useful tool for visualization and accurate mapping of the density gradients of gas dynamic flow fields, in wind and shock tunnels, where acoustic noise problems may dramatically affect reference beam holographic schemes. More... »

PAGES

341-346

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s003480050120

DOI

http://dx.doi.org/10.1007/s003480050120

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1003317311


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0901", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Aerospace Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0913", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mechanical Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Aerospace Engineering, Technion-I.T.T., 32000 Haifa, Israel, IL", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Department of Aerospace Engineering, Technion-I.T.T., 32000 Haifa, Israel, IL"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Toker", 
        "givenName": "G.", 
        "id": "sg:person.010602302315.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010602302315.68"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Aerospace Engineering, Technion-I.T.T., 32000 Haifa, Israel, IL", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Department of Aerospace Engineering, Technion-I.T.T., 32000 Haifa, Israel, IL"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Levin", 
        "givenName": "D.", 
        "id": "sg:person.012772623715.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012772623715.65"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Aerospace Engineering, Technion-I.T.T., 32000 Haifa, Israel, IL", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Department of Aerospace Engineering, Technion-I.T.T., 32000 Haifa, Israel, IL"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stricker", 
        "givenName": "J.", 
        "id": "sg:person.01312500170.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01312500170.97"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1997-08", 
    "datePublishedReg": "1997-08-01", 
    "description": "Abstract\u2002A novel optical diagnostic technique, dual hologram shearing interferometry, for measuring density gradients of different phase objects is proposed and demonstrated. The lateral shearing is achieved by using a phase grating. A holographic interferometer has been developed and designed on the base of a single pass Z type conventional schlieren device. The interferometer\u2019s scheme is insensitive to acoustical disturbances, similarly to the conventional schlieren layout, and is capable of recording holograms with a continuous wave laser during the wind tunnel run.The features of the technique make it tolerant to both the temporal coherence of the laser light source and to the relatively low, schlieren quality optical windows of the wind tunnel\u2019s test section. The obtained reconstructed lateral shearing interferograms with a large region of overlap have high contrast and may have an arbitrary orientation and/or spacing of the background interference fringes.It is believed that the proposed approach will become a useful tool for visualization and accurate mapping of the density gradients of gas dynamic flow fields, in wind and shock tunnels, where acoustic noise problems may dramatically affect reference beam holographic schemes.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s003480050120", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1042183", 
        "issn": [
          "0723-4864", 
          "1432-1114"
        ], 
        "name": "Experiments in Fluids", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "23"
      }
    ], 
    "keywords": [
      "test section", 
      "flow field", 
      "wind tunnel test section", 
      "novel optical diagnostic technique", 
      "wind tunnel runs", 
      "tunnel test section", 
      "dynamic flow field", 
      "acoustic noise problems", 
      "optical diagnostic techniques", 
      "tunnel runs", 
      "different phase objects", 
      "shock tunnel", 
      "continuous wave laser", 
      "schlieren device", 
      "holographic interferometer", 
      "laser light source", 
      "lateral shearing interferograms", 
      "density gradient", 
      "wave laser", 
      "lateral shearing", 
      "optical window", 
      "acoustical disturbances", 
      "noise problem", 
      "shearing interferometry", 
      "phase grating", 
      "interferometer scheme", 
      "phase objects", 
      "interference fringes", 
      "light source", 
      "shearing interferograms", 
      "arbitrary orientation", 
      "holographic scheme", 
      "accurate mapping", 
      "high contrast", 
      "temporal coherence", 
      "interference technique", 
      "gradient", 
      "tunnel", 
      "wind", 
      "devices", 
      "interferometry", 
      "shearing", 
      "technique", 
      "field", 
      "interferograms", 
      "spacing", 
      "grating", 
      "interferometer", 
      "laser", 
      "layout", 
      "scheme", 
      "large regions", 
      "diagnostic techniques", 
      "holograms", 
      "coherence", 
      "fringes", 
      "orientation", 
      "window", 
      "disturbances", 
      "source", 
      "run", 
      "visualization", 
      "useful tool", 
      "sections", 
      "problem", 
      "approach", 
      "objects", 
      "tool", 
      "base", 
      "mapping", 
      "region", 
      "features", 
      "overlap", 
      "contrast", 
      "dual hologram shearing interferometry", 
      "hologram shearing interferometry", 
      "single pass Z type conventional schlieren device", 
      "pass Z type conventional schlieren device", 
      "Z type conventional schlieren device", 
      "type conventional schlieren device", 
      "conventional schlieren device", 
      "conventional schlieren layout", 
      "schlieren layout", 
      "schlieren quality optical windows", 
      "quality optical windows", 
      "background interference fringes", 
      "gas dynamic flow fields", 
      "reference beam holographic schemes", 
      "beam holographic schemes", 
      "Dual hologram shearing interference technique", 
      "hologram shearing interference technique", 
      "shearing interference technique", 
      "wind tunnel flow fields", 
      "tunnel flow fields"
    ], 
    "name": "Dual hologram shearing interference technique for wind tunnel flow fields testing", 
    "pagination": "341-346", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1003317311"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s003480050120"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s003480050120", 
      "https://app.dimensions.ai/details/publication/pub.1003317311"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:11", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_299.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s003480050120"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s003480050120'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s003480050120'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s003480050120'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s003480050120'


 

This table displays all metadata directly associated to this object as RDF triples.

174 TRIPLES      21 PREDICATES      122 URIs      112 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s003480050120 schema:about anzsrc-for:09
2 anzsrc-for:0901
3 anzsrc-for:0913
4 anzsrc-for:0915
5 schema:author Nee256c66809446cc854df7f7b0225298
6 schema:datePublished 1997-08
7 schema:datePublishedReg 1997-08-01
8 schema:description Abstract A novel optical diagnostic technique, dual hologram shearing interferometry, for measuring density gradients of different phase objects is proposed and demonstrated. The lateral shearing is achieved by using a phase grating. A holographic interferometer has been developed and designed on the base of a single pass Z type conventional schlieren device. The interferometer’s scheme is insensitive to acoustical disturbances, similarly to the conventional schlieren layout, and is capable of recording holograms with a continuous wave laser during the wind tunnel run.The features of the technique make it tolerant to both the temporal coherence of the laser light source and to the relatively low, schlieren quality optical windows of the wind tunnel’s test section. The obtained reconstructed lateral shearing interferograms with a large region of overlap have high contrast and may have an arbitrary orientation and/or spacing of the background interference fringes.It is believed that the proposed approach will become a useful tool for visualization and accurate mapping of the density gradients of gas dynamic flow fields, in wind and shock tunnels, where acoustic noise problems may dramatically affect reference beam holographic schemes.
9 schema:genre article
10 schema:inLanguage en
11 schema:isAccessibleForFree false
12 schema:isPartOf N13a5a11069a047638d051c43d52ab497
13 N1fb93f573d564642a9a4d943b2e93fdf
14 sg:journal.1042183
15 schema:keywords Dual hologram shearing interference technique
16 Z type conventional schlieren device
17 accurate mapping
18 acoustic noise problems
19 acoustical disturbances
20 approach
21 arbitrary orientation
22 background interference fringes
23 base
24 beam holographic schemes
25 coherence
26 continuous wave laser
27 contrast
28 conventional schlieren device
29 conventional schlieren layout
30 density gradient
31 devices
32 diagnostic techniques
33 different phase objects
34 disturbances
35 dual hologram shearing interferometry
36 dynamic flow field
37 features
38 field
39 flow field
40 fringes
41 gas dynamic flow fields
42 gradient
43 grating
44 high contrast
45 hologram shearing interference technique
46 hologram shearing interferometry
47 holograms
48 holographic interferometer
49 holographic scheme
50 interference fringes
51 interference technique
52 interferograms
53 interferometer
54 interferometer scheme
55 interferometry
56 large regions
57 laser
58 laser light source
59 lateral shearing
60 lateral shearing interferograms
61 layout
62 light source
63 mapping
64 noise problem
65 novel optical diagnostic technique
66 objects
67 optical diagnostic techniques
68 optical window
69 orientation
70 overlap
71 pass Z type conventional schlieren device
72 phase grating
73 phase objects
74 problem
75 quality optical windows
76 reference beam holographic schemes
77 region
78 run
79 scheme
80 schlieren device
81 schlieren layout
82 schlieren quality optical windows
83 sections
84 shearing
85 shearing interference technique
86 shearing interferograms
87 shearing interferometry
88 shock tunnel
89 single pass Z type conventional schlieren device
90 source
91 spacing
92 technique
93 temporal coherence
94 test section
95 tool
96 tunnel
97 tunnel flow fields
98 tunnel runs
99 tunnel test section
100 type conventional schlieren device
101 useful tool
102 visualization
103 wave laser
104 wind
105 wind tunnel flow fields
106 wind tunnel runs
107 wind tunnel test section
108 window
109 schema:name Dual hologram shearing interference technique for wind tunnel flow fields testing
110 schema:pagination 341-346
111 schema:productId N629102ff03f947b9b8723810e1959329
112 Nd5f611ce964d4acea409f81c9c8b2101
113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003317311
114 https://doi.org/10.1007/s003480050120
115 schema:sdDatePublished 2021-12-01T19:11
116 schema:sdLicense https://scigraph.springernature.com/explorer/license/
117 schema:sdPublisher N0c029cd1212e42b6927911eda0f1746e
118 schema:url https://doi.org/10.1007/s003480050120
119 sgo:license sg:explorer/license/
120 sgo:sdDataset articles
121 rdf:type schema:ScholarlyArticle
122 N0c029cd1212e42b6927911eda0f1746e schema:name Springer Nature - SN SciGraph project
123 rdf:type schema:Organization
124 N13a5a11069a047638d051c43d52ab497 schema:volumeNumber 23
125 rdf:type schema:PublicationVolume
126 N1fb93f573d564642a9a4d943b2e93fdf schema:issueNumber 4
127 rdf:type schema:PublicationIssue
128 N2799ff9fb9cf43bfa5c76cad7194065c rdf:first sg:person.01312500170.97
129 rdf:rest rdf:nil
130 N629102ff03f947b9b8723810e1959329 schema:name doi
131 schema:value 10.1007/s003480050120
132 rdf:type schema:PropertyValue
133 N81dbcfc9fc314d08930b6f73bb2c4d7b rdf:first sg:person.012772623715.65
134 rdf:rest N2799ff9fb9cf43bfa5c76cad7194065c
135 Nd5f611ce964d4acea409f81c9c8b2101 schema:name dimensions_id
136 schema:value pub.1003317311
137 rdf:type schema:PropertyValue
138 Nee256c66809446cc854df7f7b0225298 rdf:first sg:person.010602302315.68
139 rdf:rest N81dbcfc9fc314d08930b6f73bb2c4d7b
140 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
141 schema:name Engineering
142 rdf:type schema:DefinedTerm
143 anzsrc-for:0901 schema:inDefinedTermSet anzsrc-for:
144 schema:name Aerospace Engineering
145 rdf:type schema:DefinedTerm
146 anzsrc-for:0913 schema:inDefinedTermSet anzsrc-for:
147 schema:name Mechanical Engineering
148 rdf:type schema:DefinedTerm
149 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
150 schema:name Interdisciplinary Engineering
151 rdf:type schema:DefinedTerm
152 sg:journal.1042183 schema:issn 0723-4864
153 1432-1114
154 schema:name Experiments in Fluids
155 schema:publisher Springer Nature
156 rdf:type schema:Periodical
157 sg:person.010602302315.68 schema:affiliation grid-institutes:None
158 schema:familyName Toker
159 schema:givenName G.
160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010602302315.68
161 rdf:type schema:Person
162 sg:person.012772623715.65 schema:affiliation grid-institutes:None
163 schema:familyName Levin
164 schema:givenName D.
165 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012772623715.65
166 rdf:type schema:Person
167 sg:person.01312500170.97 schema:affiliation grid-institutes:None
168 schema:familyName Stricker
169 schema:givenName J.
170 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01312500170.97
171 rdf:type schema:Person
172 grid-institutes:None schema:alternateName Department of Aerospace Engineering, Technion-I.T.T., 32000 Haifa, Israel, IL
173 schema:name Department of Aerospace Engineering, Technion-I.T.T., 32000 Haifa, Israel, IL
174 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...