A comparative study of the MQD method and several correlation-based PIV evaluation algorithms View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2000-01

AUTHORS

L. Gui, W. Merzkirch

ABSTRACT

The Minimum Quadratic Difference (MQD) method is compared with methods conventionally used for the evaluation of PIV recordings, i.e. correlation-based evaluation with fixed interrogation windows (auto- or cross-correlation) and correlation-based tracking. The comparison is performed by studying the evaluation accuracy achieved when applying these methods to pairs of synthetic PIV recordings for which the true displacements are known. The influence of the magnitude of the particle image displacement, evaluation window size, density of particle image distribution, and particle image size on the accuracy are investigated. In all these cases the best results in terms of a statistical error are obtained with the MQD method. The superiority of the MQD method can be explained with its potential of accounting for non-uniformities in the particle image distribution and a non-uniform illumination. It is also shown that the conventional correlation-based methods may produce principal errors that are non-existent for the MQD method. The evaluation speed achievable for the MQD method by making use of the FFT is comparable to that common for the generally used auto- or cross-correlation algorithm. Finally, a quantitative explanation is given for the often observed phenomenon that PIV velocity results tend to be smaller than the true values. More... »

PAGES

36-44

Journal

TITLE

Experiments in Fluids

ISSUE

1

VOLUME

28

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s003480050005

DOI

http://dx.doi.org/10.1007/s003480050005

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1019720157


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Lehrstuhl f\u00fcr Str\u00f6mungslehre, Universit\u00e4t Essen D-45117 Essen, Germany, DE"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gui", 
        "givenName": "L.", 
        "id": "sg:person.010675452607.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010675452607.82"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Lehrstuhl f\u00fcr Str\u00f6mungslehre, Universit\u00e4t Essen D-45117 Essen, Germany, DE"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Merzkirch", 
        "givenName": "W.", 
        "id": "sg:person.011702677450.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011702677450.23"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2000-01", 
    "datePublishedReg": "2000-01-01", 
    "description": "The Minimum Quadratic Difference (MQD) method is compared with methods conventionally used for the evaluation of PIV recordings, i.e. correlation-based evaluation with fixed interrogation windows (auto- or cross-correlation) and correlation-based tracking. The comparison is performed by studying the evaluation accuracy achieved when applying these methods to pairs of synthetic PIV recordings for which the true displacements are known. The influence of the magnitude of the particle image displacement, evaluation window size, density of particle image distribution, and particle image size on the accuracy are investigated. In all these cases the best results in terms of a statistical error are obtained with the MQD method. The superiority of the MQD method can be explained with its potential of accounting for non-uniformities in the particle image distribution and a non-uniform illumination. It is also shown that the conventional correlation-based methods may produce principal errors that are non-existent for the MQD method. The evaluation speed achievable for the MQD method by making use of the FFT is comparable to that common for the generally used auto- or cross-correlation algorithm. Finally, a quantitative explanation is given for the often observed phenomenon that PIV velocity results tend to be smaller than the true values.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s003480050005", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1042183", 
        "issn": [
          "0723-4864", 
          "1432-1114"
        ], 
        "name": "Experiments in Fluids", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "28"
      }
    ], 
    "name": "A comparative study of the MQD method and several correlation-based PIV evaluation algorithms", 
    "pagination": "36-44", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "5df596739064050e226aff6628d883b8e57ea75047654bc2bd00486a991ebac7"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s003480050005"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1019720157"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s003480050005", 
      "https://app.dimensions.ai/details/publication/pub.1019720157"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T19:08", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8678_00000512.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs003480050005"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s003480050005'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s003480050005'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s003480050005'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s003480050005'


 

This table displays all metadata directly associated to this object as RDF triples.

69 TRIPLES      20 PREDICATES      27 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s003480050005 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author N8cb5ae0315e54016ba5e3b3dbaebe449
4 schema:datePublished 2000-01
5 schema:datePublishedReg 2000-01-01
6 schema:description The Minimum Quadratic Difference (MQD) method is compared with methods conventionally used for the evaluation of PIV recordings, i.e. correlation-based evaluation with fixed interrogation windows (auto- or cross-correlation) and correlation-based tracking. The comparison is performed by studying the evaluation accuracy achieved when applying these methods to pairs of synthetic PIV recordings for which the true displacements are known. The influence of the magnitude of the particle image displacement, evaluation window size, density of particle image distribution, and particle image size on the accuracy are investigated. In all these cases the best results in terms of a statistical error are obtained with the MQD method. The superiority of the MQD method can be explained with its potential of accounting for non-uniformities in the particle image distribution and a non-uniform illumination. It is also shown that the conventional correlation-based methods may produce principal errors that are non-existent for the MQD method. The evaluation speed achievable for the MQD method by making use of the FFT is comparable to that common for the generally used auto- or cross-correlation algorithm. Finally, a quantitative explanation is given for the often observed phenomenon that PIV velocity results tend to be smaller than the true values.
7 schema:genre research_article
8 schema:inLanguage en
9 schema:isAccessibleForFree false
10 schema:isPartOf N948873a469334d64be47911138e4fb97
11 N9cd66dc0cd7d495b82a38627678911a9
12 sg:journal.1042183
13 schema:name A comparative study of the MQD method and several correlation-based PIV evaluation algorithms
14 schema:pagination 36-44
15 schema:productId N53958f95182f464180144fa435486917
16 N93d44bda44a0465f8e653e61cb2105aa
17 N9d182e5de78d4d4f8e550a94404e2d1e
18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019720157
19 https://doi.org/10.1007/s003480050005
20 schema:sdDatePublished 2019-04-10T19:08
21 schema:sdLicense https://scigraph.springernature.com/explorer/license/
22 schema:sdPublisher N242efc38b9754e6084161da34c47f51d
23 schema:url http://link.springer.com/10.1007%2Fs003480050005
24 sgo:license sg:explorer/license/
25 sgo:sdDataset articles
26 rdf:type schema:ScholarlyArticle
27 N242efc38b9754e6084161da34c47f51d schema:name Springer Nature - SN SciGraph project
28 rdf:type schema:Organization
29 N53958f95182f464180144fa435486917 schema:name readcube_id
30 schema:value 5df596739064050e226aff6628d883b8e57ea75047654bc2bd00486a991ebac7
31 rdf:type schema:PropertyValue
32 N8cb5ae0315e54016ba5e3b3dbaebe449 rdf:first sg:person.010675452607.82
33 rdf:rest Nea472fd6afe84678b55537f1a115f657
34 N93d44bda44a0465f8e653e61cb2105aa schema:name doi
35 schema:value 10.1007/s003480050005
36 rdf:type schema:PropertyValue
37 N948873a469334d64be47911138e4fb97 schema:volumeNumber 28
38 rdf:type schema:PublicationVolume
39 N9cd66dc0cd7d495b82a38627678911a9 schema:issueNumber 1
40 rdf:type schema:PublicationIssue
41 N9d182e5de78d4d4f8e550a94404e2d1e schema:name dimensions_id
42 schema:value pub.1019720157
43 rdf:type schema:PropertyValue
44 N9dbce90c390448d2b382ff5a4b86bfec schema:name Lehrstuhl für Strömungslehre, Universität Essen D-45117 Essen, Germany, DE
45 rdf:type schema:Organization
46 Nb0973f14e4344e988bee92fb9047af72 schema:name Lehrstuhl für Strömungslehre, Universität Essen D-45117 Essen, Germany, DE
47 rdf:type schema:Organization
48 Nea472fd6afe84678b55537f1a115f657 rdf:first sg:person.011702677450.23
49 rdf:rest rdf:nil
50 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
51 schema:name Mathematical Sciences
52 rdf:type schema:DefinedTerm
53 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
54 schema:name Statistics
55 rdf:type schema:DefinedTerm
56 sg:journal.1042183 schema:issn 0723-4864
57 1432-1114
58 schema:name Experiments in Fluids
59 rdf:type schema:Periodical
60 sg:person.010675452607.82 schema:affiliation Nb0973f14e4344e988bee92fb9047af72
61 schema:familyName Gui
62 schema:givenName L.
63 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010675452607.82
64 rdf:type schema:Person
65 sg:person.011702677450.23 schema:affiliation N9dbce90c390448d2b382ff5a4b86bfec
66 schema:familyName Merzkirch
67 schema:givenName W.
68 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011702677450.23
69 rdf:type schema:Person
 




Preview window. Press ESC to close (or click here)


...