A comparative study of the MQD method and several correlation-based PIV evaluation algorithms View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2000-01

AUTHORS

L. Gui, W. Merzkirch

ABSTRACT

The Minimum Quadratic Difference (MQD) method is compared with methods conventionally used for the evaluation of PIV recordings, i.e. correlation-based evaluation with fixed interrogation windows (auto- or cross-correlation) and correlation-based tracking. The comparison is performed by studying the evaluation accuracy achieved when applying these methods to pairs of synthetic PIV recordings for which the true displacements are known. The influence of the magnitude of the particle image displacement, evaluation window size, density of particle image distribution, and particle image size on the accuracy are investigated. In all these cases the best results in terms of a statistical error are obtained with the MQD method. The superiority of the MQD method can be explained with its potential of accounting for non-uniformities in the particle image distribution and a non-uniform illumination. It is also shown that the conventional correlation-based methods may produce principal errors that are non-existent for the MQD method. The evaluation speed achievable for the MQD method by making use of the FFT is comparable to that common for the generally used auto- or cross-correlation algorithm. Finally, a quantitative explanation is given for the often observed phenomenon that PIV velocity results tend to be smaller than the true values. More... »

PAGES

36-44

Journal

TITLE

Experiments in Fluids

ISSUE

1

VOLUME

28

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s003480050005

DOI

http://dx.doi.org/10.1007/s003480050005

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1019720157


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Lehrstuhl f\u00fcr Str\u00f6mungslehre, Universit\u00e4t Essen D-45117 Essen, Germany, DE"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gui", 
        "givenName": "L.", 
        "id": "sg:person.010675452607.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010675452607.82"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Lehrstuhl f\u00fcr Str\u00f6mungslehre, Universit\u00e4t Essen D-45117 Essen, Germany, DE"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Merzkirch", 
        "givenName": "W.", 
        "id": "sg:person.011702677450.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011702677450.23"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2000-01", 
    "datePublishedReg": "2000-01-01", 
    "description": "The Minimum Quadratic Difference (MQD) method is compared with methods conventionally used for the evaluation of PIV recordings, i.e. correlation-based evaluation with fixed interrogation windows (auto- or cross-correlation) and correlation-based tracking. The comparison is performed by studying the evaluation accuracy achieved when applying these methods to pairs of synthetic PIV recordings for which the true displacements are known. The influence of the magnitude of the particle image displacement, evaluation window size, density of particle image distribution, and particle image size on the accuracy are investigated. In all these cases the best results in terms of a statistical error are obtained with the MQD method. The superiority of the MQD method can be explained with its potential of accounting for non-uniformities in the particle image distribution and a non-uniform illumination. It is also shown that the conventional correlation-based methods may produce principal errors that are non-existent for the MQD method. The evaluation speed achievable for the MQD method by making use of the FFT is comparable to that common for the generally used auto- or cross-correlation algorithm. Finally, a quantitative explanation is given for the often observed phenomenon that PIV velocity results tend to be smaller than the true values.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s003480050005", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1042183", 
        "issn": [
          "0723-4864", 
          "1432-1114"
        ], 
        "name": "Experiments in Fluids", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "28"
      }
    ], 
    "name": "A comparative study of the MQD method and several correlation-based PIV evaluation algorithms", 
    "pagination": "36-44", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "5df596739064050e226aff6628d883b8e57ea75047654bc2bd00486a991ebac7"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s003480050005"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1019720157"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s003480050005", 
      "https://app.dimensions.ai/details/publication/pub.1019720157"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T19:08", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8678_00000512.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs003480050005"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s003480050005'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s003480050005'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s003480050005'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s003480050005'


 

This table displays all metadata directly associated to this object as RDF triples.

69 TRIPLES      20 PREDICATES      27 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s003480050005 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author N7a385b80089444b8955f54354ba75267
4 schema:datePublished 2000-01
5 schema:datePublishedReg 2000-01-01
6 schema:description The Minimum Quadratic Difference (MQD) method is compared with methods conventionally used for the evaluation of PIV recordings, i.e. correlation-based evaluation with fixed interrogation windows (auto- or cross-correlation) and correlation-based tracking. The comparison is performed by studying the evaluation accuracy achieved when applying these methods to pairs of synthetic PIV recordings for which the true displacements are known. The influence of the magnitude of the particle image displacement, evaluation window size, density of particle image distribution, and particle image size on the accuracy are investigated. In all these cases the best results in terms of a statistical error are obtained with the MQD method. The superiority of the MQD method can be explained with its potential of accounting for non-uniformities in the particle image distribution and a non-uniform illumination. It is also shown that the conventional correlation-based methods may produce principal errors that are non-existent for the MQD method. The evaluation speed achievable for the MQD method by making use of the FFT is comparable to that common for the generally used auto- or cross-correlation algorithm. Finally, a quantitative explanation is given for the often observed phenomenon that PIV velocity results tend to be smaller than the true values.
7 schema:genre research_article
8 schema:inLanguage en
9 schema:isAccessibleForFree false
10 schema:isPartOf N2431f3458cfe45f4958c489f69b83472
11 Na8640772a5fe4f998456f1becf63fcd2
12 sg:journal.1042183
13 schema:name A comparative study of the MQD method and several correlation-based PIV evaluation algorithms
14 schema:pagination 36-44
15 schema:productId N5aab96673a804e01aab080c442ee5b84
16 Nb8b5edf26ba141258162b27b2376a0b1
17 Nf79e56501f874553adc3f9025b77ffee
18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019720157
19 https://doi.org/10.1007/s003480050005
20 schema:sdDatePublished 2019-04-10T19:08
21 schema:sdLicense https://scigraph.springernature.com/explorer/license/
22 schema:sdPublisher N2c456a356b294e62a4c7eb5676696911
23 schema:url http://link.springer.com/10.1007%2Fs003480050005
24 sgo:license sg:explorer/license/
25 sgo:sdDataset articles
26 rdf:type schema:ScholarlyArticle
27 N2431f3458cfe45f4958c489f69b83472 schema:issueNumber 1
28 rdf:type schema:PublicationIssue
29 N2c456a356b294e62a4c7eb5676696911 schema:name Springer Nature - SN SciGraph project
30 rdf:type schema:Organization
31 N4dca62fd14b84c1d8138e6871197e3ed schema:name Lehrstuhl für Strömungslehre, Universität Essen D-45117 Essen, Germany, DE
32 rdf:type schema:Organization
33 N5aab96673a804e01aab080c442ee5b84 schema:name dimensions_id
34 schema:value pub.1019720157
35 rdf:type schema:PropertyValue
36 N7a385b80089444b8955f54354ba75267 rdf:first sg:person.010675452607.82
37 rdf:rest Na454e1a0e24e43a481c80ee34df628d5
38 Na454e1a0e24e43a481c80ee34df628d5 rdf:first sg:person.011702677450.23
39 rdf:rest rdf:nil
40 Na8640772a5fe4f998456f1becf63fcd2 schema:volumeNumber 28
41 rdf:type schema:PublicationVolume
42 Nb8b5edf26ba141258162b27b2376a0b1 schema:name readcube_id
43 schema:value 5df596739064050e226aff6628d883b8e57ea75047654bc2bd00486a991ebac7
44 rdf:type schema:PropertyValue
45 Nec5111e9ed5746a69d4554e5f6d02f51 schema:name Lehrstuhl für Strömungslehre, Universität Essen D-45117 Essen, Germany, DE
46 rdf:type schema:Organization
47 Nf79e56501f874553adc3f9025b77ffee schema:name doi
48 schema:value 10.1007/s003480050005
49 rdf:type schema:PropertyValue
50 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
51 schema:name Mathematical Sciences
52 rdf:type schema:DefinedTerm
53 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
54 schema:name Statistics
55 rdf:type schema:DefinedTerm
56 sg:journal.1042183 schema:issn 0723-4864
57 1432-1114
58 schema:name Experiments in Fluids
59 rdf:type schema:Periodical
60 sg:person.010675452607.82 schema:affiliation Nec5111e9ed5746a69d4554e5f6d02f51
61 schema:familyName Gui
62 schema:givenName L.
63 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010675452607.82
64 rdf:type schema:Person
65 sg:person.011702677450.23 schema:affiliation N4dca62fd14b84c1d8138e6871197e3ed
66 schema:familyName Merzkirch
67 schema:givenName W.
68 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011702677450.23
69 rdf:type schema:Person
 




Preview window. Press ESC to close (or click here)


...