A method for volumetric visualization of temperature distribution: three-dimensional meshed infrared thermography View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04

AUTHORS

Özgün Özer, Dilek Kumlutaş, Utku Alp Yücekaya

ABSTRACT

In this study, a method called three-dimensional meshed infrared thermography (3D MIT) was developed to visualize the volumetric temperature of air using an infrared camera. The main operating principle of the proposed method is to image the spheres using an infrared camera and processing the images with computer software to obtain the volumetric temperature distribution. For the correct implementation of the method, an equation is proposed to determine the distance between the thermal target and the measurement target placed in the flow to be examined. The proposed method was compared with conventional measurement screen methods, namely those using a plane target and a high-porosity target, via particle image velocimetry (PIV) in terms of flow effects. The temperature measurement capability of the proposed method is presented in comparison with the results of thermocouple and conventional measurement screen-based measurements recorded using a jet flow. In addition, the volumetric temperature isosurfaces obtained via the 3D MIT method of a jet flow were compared with the volumetric velocity isosurfaces obtained via the PIV method in terms of the flow structure. More... »

PAGES

54

Journal

TITLE

Experiments in Fluids

ISSUE

4

VOLUME

60

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00348-019-2704-7

DOI

http://dx.doi.org/10.1007/s00348-019-2704-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112468424


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Dokuz Eyl\u00fcl University", 
          "id": "https://www.grid.ac/institutes/grid.21200.31", 
          "name": [
            "Mechanical Engineering Department, Dokuz Eylul University, T\u0131naztepe, Izmir, Turkey"
          ], 
          "type": "Organization"
        }, 
        "familyName": "\u00d6zer", 
        "givenName": "\u00d6zg\u00fcn", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Dokuz Eyl\u00fcl University", 
          "id": "https://www.grid.ac/institutes/grid.21200.31", 
          "name": [
            "Mechanical Engineering Department, Dokuz Eylul University, T\u0131naztepe, Izmir, Turkey"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kumluta\u015f", 
        "givenName": "Dilek", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Dokuz Eyl\u00fcl University", 
          "id": "https://www.grid.ac/institutes/grid.21200.31", 
          "name": [
            "Mechanical Engineering Department, Dokuz Eylul University, T\u0131naztepe, Izmir, Turkey"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Y\u00fccekaya", 
        "givenName": "Utku Alp", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00348-008-0590-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000642130", 
          "https://doi.org/10.1007/s00348-008-0590-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00348-008-0590-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000642130", 
          "https://doi.org/10.1007/s00348-008-0590-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.flowmeasinst.2011.04.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008995378"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nucengdes.2015.08.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009565540"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/s130201593", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009968728"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00332317", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015409380", 
          "https://doi.org/10.1007/bf00332317"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00348-005-0991-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018108333", 
          "https://doi.org/10.1007/s00348-005-0991-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00348-005-0991-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018108333", 
          "https://doi.org/10.1007/s00348-005-0991-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00348-004-0911-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023710553", 
          "https://doi.org/10.1007/s00348-004-0911-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.buildenv.2008.02.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023754700"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s003400000383", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026490298", 
          "https://doi.org/10.1007/s003400000383"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.enbuild.2006.02.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031086902"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/17686733.2016.1258149", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038278120"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s003480050260", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038310799", 
          "https://doi.org/10.1007/s003480050260"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0378-7788(01)00133-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040749777"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00348-008-0485-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045939579", 
          "https://doi.org/10.1007/s00348-008-0485-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00348-008-0485-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045939579", 
          "https://doi.org/10.1007/s00348-008-0485-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.expthermflusci.2012.07.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050201588"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5104/jiepeng.8.29", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050965636"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.1379033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062068919"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3791/54076", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071425850"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.applthermaleng.2017.06.053", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086019578"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nucengdes.2017.06.034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090325312"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/9780470682234", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098662612"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.21611/qirt.2010.045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099098909"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04", 
    "datePublishedReg": "2019-04-01", 
    "description": "In this study, a method called three-dimensional meshed infrared thermography (3D MIT) was developed to visualize the volumetric temperature of air using an infrared camera. The main operating principle of the proposed method is to image the spheres using an infrared camera and processing the images with computer software to obtain the volumetric temperature distribution. For the correct implementation of the method, an equation is proposed to determine the distance between the thermal target and the measurement target placed in the flow to be examined. The proposed method was compared with conventional measurement screen methods, namely those using a plane target and a high-porosity target, via particle image velocimetry (PIV) in terms of flow effects. The temperature measurement capability of the proposed method is presented in comparison with the results of thermocouple and conventional measurement screen-based measurements recorded using a jet flow. In addition, the volumetric temperature isosurfaces obtained via the 3D MIT method of a jet flow were compared with the volumetric velocity isosurfaces obtained via the PIV method in terms of the flow structure. ", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00348-019-2704-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1042183", 
        "issn": [
          "0723-4864", 
          "1432-1114"
        ], 
        "name": "Experiments in Fluids", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "60"
      }
    ], 
    "name": "A method for volumetric visualization of temperature distribution: three-dimensional meshed infrared thermography", 
    "pagination": "54", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "3f5935768fff20e1b021dca9d4ba9d67dbf6233ee9d988db71c2ff432f3f9bd0"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00348-019-2704-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112468424"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00348-019-2704-7", 
      "https://app.dimensions.ai/details/publication/pub.1112468424"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:34", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000349_0000000349/records_113661_00000005.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00348-019-2704-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00348-019-2704-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00348-019-2704-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00348-019-2704-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00348-019-2704-7'


 

This table displays all metadata directly associated to this object as RDF triples.

145 TRIPLES      21 PREDICATES      49 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00348-019-2704-7 schema:about anzsrc-for:09
2 anzsrc-for:0915
3 schema:author N89b1d1ba0422476893664d24ee1a0b1f
4 schema:citation sg:pub.10.1007/bf00332317
5 sg:pub.10.1007/s003400000383
6 sg:pub.10.1007/s00348-004-0911-2
7 sg:pub.10.1007/s00348-005-0991-7
8 sg:pub.10.1007/s00348-008-0485-5
9 sg:pub.10.1007/s00348-008-0590-5
10 sg:pub.10.1007/s003480050260
11 https://doi.org/10.1002/9780470682234
12 https://doi.org/10.1016/j.applthermaleng.2017.06.053
13 https://doi.org/10.1016/j.buildenv.2008.02.009
14 https://doi.org/10.1016/j.enbuild.2006.02.004
15 https://doi.org/10.1016/j.expthermflusci.2012.07.005
16 https://doi.org/10.1016/j.flowmeasinst.2011.04.007
17 https://doi.org/10.1016/j.nucengdes.2015.08.013
18 https://doi.org/10.1016/j.nucengdes.2017.06.034
19 https://doi.org/10.1016/s0378-7788(01)00133-5
20 https://doi.org/10.1080/17686733.2016.1258149
21 https://doi.org/10.1115/1.1379033
22 https://doi.org/10.21611/qirt.2010.045
23 https://doi.org/10.3390/s130201593
24 https://doi.org/10.3791/54076
25 https://doi.org/10.5104/jiepeng.8.29
26 schema:datePublished 2019-04
27 schema:datePublishedReg 2019-04-01
28 schema:description In this study, a method called three-dimensional meshed infrared thermography (3D MIT) was developed to visualize the volumetric temperature of air using an infrared camera. The main operating principle of the proposed method is to image the spheres using an infrared camera and processing the images with computer software to obtain the volumetric temperature distribution. For the correct implementation of the method, an equation is proposed to determine the distance between the thermal target and the measurement target placed in the flow to be examined. The proposed method was compared with conventional measurement screen methods, namely those using a plane target and a high-porosity target, via particle image velocimetry (PIV) in terms of flow effects. The temperature measurement capability of the proposed method is presented in comparison with the results of thermocouple and conventional measurement screen-based measurements recorded using a jet flow. In addition, the volumetric temperature isosurfaces obtained via the 3D MIT method of a jet flow were compared with the volumetric velocity isosurfaces obtained via the PIV method in terms of the flow structure.
29 schema:genre research_article
30 schema:inLanguage en
31 schema:isAccessibleForFree false
32 schema:isPartOf Na38b6127de1146f1849d553306897307
33 Nef3bfaf03d61471d9c33ed105e6e9836
34 sg:journal.1042183
35 schema:name A method for volumetric visualization of temperature distribution: three-dimensional meshed infrared thermography
36 schema:pagination 54
37 schema:productId N05232ed846684124b1e9585cc0182b2a
38 N98b1542cec7b4718932fd4a20fe9a5fb
39 Ncd5349f331a94e04bb1ef89db0e91cd3
40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112468424
41 https://doi.org/10.1007/s00348-019-2704-7
42 schema:sdDatePublished 2019-04-11T10:34
43 schema:sdLicense https://scigraph.springernature.com/explorer/license/
44 schema:sdPublisher N50394c7fc8a042d69a24cd55da06101c
45 schema:url https://link.springer.com/10.1007%2Fs00348-019-2704-7
46 sgo:license sg:explorer/license/
47 sgo:sdDataset articles
48 rdf:type schema:ScholarlyArticle
49 N05232ed846684124b1e9585cc0182b2a schema:name doi
50 schema:value 10.1007/s00348-019-2704-7
51 rdf:type schema:PropertyValue
52 N1f037fafab234cca88645c368115d603 schema:affiliation https://www.grid.ac/institutes/grid.21200.31
53 schema:familyName Yücekaya
54 schema:givenName Utku Alp
55 rdf:type schema:Person
56 N338d6e299dcf466eb281d21601694e3b rdf:first Neeb2e09e3b674a3aaa1cfa9cf0c561bd
57 rdf:rest N572726c63a1f4960aef9a22c8eaa38ce
58 N50394c7fc8a042d69a24cd55da06101c schema:name Springer Nature - SN SciGraph project
59 rdf:type schema:Organization
60 N572726c63a1f4960aef9a22c8eaa38ce rdf:first N1f037fafab234cca88645c368115d603
61 rdf:rest rdf:nil
62 N89b1d1ba0422476893664d24ee1a0b1f rdf:first Nc3941b574f304390ada9660999927059
63 rdf:rest N338d6e299dcf466eb281d21601694e3b
64 N98b1542cec7b4718932fd4a20fe9a5fb schema:name dimensions_id
65 schema:value pub.1112468424
66 rdf:type schema:PropertyValue
67 Na38b6127de1146f1849d553306897307 schema:issueNumber 4
68 rdf:type schema:PublicationIssue
69 Nc3941b574f304390ada9660999927059 schema:affiliation https://www.grid.ac/institutes/grid.21200.31
70 schema:familyName Özer
71 schema:givenName Özgün
72 rdf:type schema:Person
73 Ncd5349f331a94e04bb1ef89db0e91cd3 schema:name readcube_id
74 schema:value 3f5935768fff20e1b021dca9d4ba9d67dbf6233ee9d988db71c2ff432f3f9bd0
75 rdf:type schema:PropertyValue
76 Neeb2e09e3b674a3aaa1cfa9cf0c561bd schema:affiliation https://www.grid.ac/institutes/grid.21200.31
77 schema:familyName Kumlutaş
78 schema:givenName Dilek
79 rdf:type schema:Person
80 Nef3bfaf03d61471d9c33ed105e6e9836 schema:volumeNumber 60
81 rdf:type schema:PublicationVolume
82 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
83 schema:name Engineering
84 rdf:type schema:DefinedTerm
85 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
86 schema:name Interdisciplinary Engineering
87 rdf:type schema:DefinedTerm
88 sg:journal.1042183 schema:issn 0723-4864
89 1432-1114
90 schema:name Experiments in Fluids
91 rdf:type schema:Periodical
92 sg:pub.10.1007/bf00332317 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015409380
93 https://doi.org/10.1007/bf00332317
94 rdf:type schema:CreativeWork
95 sg:pub.10.1007/s003400000383 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026490298
96 https://doi.org/10.1007/s003400000383
97 rdf:type schema:CreativeWork
98 sg:pub.10.1007/s00348-004-0911-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023710553
99 https://doi.org/10.1007/s00348-004-0911-2
100 rdf:type schema:CreativeWork
101 sg:pub.10.1007/s00348-005-0991-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018108333
102 https://doi.org/10.1007/s00348-005-0991-7
103 rdf:type schema:CreativeWork
104 sg:pub.10.1007/s00348-008-0485-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045939579
105 https://doi.org/10.1007/s00348-008-0485-5
106 rdf:type schema:CreativeWork
107 sg:pub.10.1007/s00348-008-0590-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000642130
108 https://doi.org/10.1007/s00348-008-0590-5
109 rdf:type schema:CreativeWork
110 sg:pub.10.1007/s003480050260 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038310799
111 https://doi.org/10.1007/s003480050260
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1002/9780470682234 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098662612
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1016/j.applthermaleng.2017.06.053 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086019578
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1016/j.buildenv.2008.02.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023754700
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1016/j.enbuild.2006.02.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031086902
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1016/j.expthermflusci.2012.07.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050201588
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1016/j.flowmeasinst.2011.04.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008995378
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1016/j.nucengdes.2015.08.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009565540
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1016/j.nucengdes.2017.06.034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090325312
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1016/s0378-7788(01)00133-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040749777
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1080/17686733.2016.1258149 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038278120
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1115/1.1379033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062068919
134 rdf:type schema:CreativeWork
135 https://doi.org/10.21611/qirt.2010.045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099098909
136 rdf:type schema:CreativeWork
137 https://doi.org/10.3390/s130201593 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009968728
138 rdf:type schema:CreativeWork
139 https://doi.org/10.3791/54076 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071425850
140 rdf:type schema:CreativeWork
141 https://doi.org/10.5104/jiepeng.8.29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050965636
142 rdf:type schema:CreativeWork
143 https://www.grid.ac/institutes/grid.21200.31 schema:alternateName Dokuz Eylül University
144 schema:name Mechanical Engineering Department, Dokuz Eylul University, Tınaztepe, Izmir, Turkey
145 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...