Fast 3D flow reconstructions from 2D cross-plane observations View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-02

AUTHORS

Pranav Chandramouli, Etienne Memin, Dominique Heitz, Lionel Fiabane

ABSTRACT

A computationally efficient flow reconstruction technique is proposed, exploiting homogeneity in a given direction, to recreate three-dimensional instantaneous turbulent velocity fields from snapshots of two dimension planar fields. This methodology, termed as ’snapshot optimisation’ or SO, can help to provide 3D data sets for studies which are currently restricted by the limitations of experimental measurement techniques. The SO method aims at optimising the error between an inlet plane with a homogeneous direction and snapshots, obtained over a sufficient period of time, on the observation plane. The observations are carried out on a plane perpendicular to the inlet plane with a shared edge normal to the homogeneity direction. The method is applicable to all flows which display a direction of homogeneity such as cylinder wake flows, channel flow, mixing layer, and jet (axisymmetric). The ability of the method is assessed with two synthetic data sets, and three experimental PIV data sets. A good reconstruction of the large-scale structures is observed for all cases. The small-scale reconstruction ability is partially limited especially for higher dimensional observation systems. POD-based SO method and averaging SO variations of the method are shown to reduce discontinuities created due to temporal mismatch in the homogenous direction providing a smooth velocity reconstruction. The volumetric reconstruction is seen to capture large-scale structures for synthetic and experimental case studies. The algorithm run time is found to be in the order of a minute providing results comparable with the reference. Such a reconstruction methodology can provide important information for data assimilation in the form of initial condition, background condition, and 3D observations. More... »

PAGES

30

References to SciGraph publications

  • 2011-04. Full 3D correlation tensor computed from double field stereoscopic PIV in a high Reynolds number turbulent boundary layer in EXPERIMENTS IN FLUIDS
  • 2008-10. Scanning PIV investigation of the laminar separation bubble on a SD7003 airfoil in EXPERIMENTS IN FLUIDS
  • 2004-07. Analysis of the wake–mixing-layer interaction using multiple plane PIV and 3D classical POD in EXPERIMENTS IN FLUIDS
  • 1971. Optimal Control of Systems Governed by Partial Differential Equations in NONE
  • 2016-01. Divergence-free smoothing for volumetric PIV data in EXPERIMENTS IN FLUIDS
  • 1995-08. Digital-Particle-Image-Velocimetry (DPIV) in a scanning light-sheet: 3D starting flow around a short cylinder in EXPERIMENTS IN FLUIDS
  • 2016-05. Shake-The-Box: Lagrangian particle tracking at high particle image densities in EXPERIMENTS IN FLUIDS
  • 2009-09. Three-dimensional temporally resolved measurements of turbulence–flame interactions using orthogonal-plane cinema-stereoscopic PIV in EXPERIMENTS IN FLUIDS
  • 2013-07. Minimization of divergence error in volumetric velocity measurements and implications for turbulence statistics in EXPERIMENTS IN FLUIDS
  • 2000-12. Fundamentals of multiple plane stereo particle image velocimetry in EXPERIMENTS IN FLUIDS
  • 2018-10. Error reduction for time-resolved PIV data based on Navier–Stokes equations in EXPERIMENTS IN FLUIDS
  • 2013-10. Experimental study of thermal mixing layer using variable temperature hot-wire anemometry in EXPERIMENTS IN FLUIDS
  • 2016-09. Dense velocity reconstruction from tomographic PTV with material derivatives in EXPERIMENTS IN FLUIDS
  • 2005-10. Reconstruction of large coherent structures from SPIV measurements in a forced turbulent mixing layer in EXPERIMENTS IN FLUIDS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00348-018-2674-1

    DOI

    http://dx.doi.org/10.1007/s00348-018-2674-1

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1111638725


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "French Institute for Research in Computer Science and Automation", 
              "id": "https://www.grid.ac/institutes/grid.5328.c", 
              "name": [
                "INRIA, Fluminance group, Campus Universitaire de Beaulieu, 35042, Rennes Cedex, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chandramouli", 
            "givenName": "Pranav", 
            "id": "sg:person.07532521115.06", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07532521115.06"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "French Institute for Research in Computer Science and Automation", 
              "id": "https://www.grid.ac/institutes/grid.5328.c", 
              "name": [
                "INRIA, Fluminance group, Campus Universitaire de Beaulieu, 35042, Rennes Cedex, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Memin", 
            "givenName": "Etienne", 
            "id": "sg:person.012306405545.58", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012306405545.58"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National Research Institute of Science and Technology for Environment and Agriculture", 
              "id": "https://www.grid.ac/institutes/grid.48142.3b", 
              "name": [
                "INRIA, Fluminance group, Campus Universitaire de Beaulieu, 35042, Rennes Cedex, France", 
                "Irstea, UR OPAALE, 35044, Rennes Cedex, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Heitz", 
            "givenName": "Dominique", 
            "id": "sg:person.010647232045.05", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010647232045.05"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National Research Institute of Science and Technology for Environment and Agriculture", 
              "id": "https://www.grid.ac/institutes/grid.48142.3b", 
              "name": [
                "Irstea, UR OPAALE, 35044, Rennes Cedex, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Fiabane", 
            "givenName": "Lionel", 
            "id": "sg:person.012057270222.60", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012057270222.60"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s00348-015-2097-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002007379", 
              "https://doi.org/10.1007/s00348-015-2097-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0957-0233/24/1/012001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007106650"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00348-008-0563-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010359986", 
              "https://doi.org/10.1007/s00348-008-0563-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00348-008-0563-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010359986", 
              "https://doi.org/10.1007/s00348-008-0563-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0957-0233/16/4/011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011647965"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s003480070009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016057977", 
              "https://doi.org/10.1007/s003480070009"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00196474", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016922315", 
              "https://doi.org/10.1007/bf00196474"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00348-013-1599-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017399597", 
              "https://doi.org/10.1007/s00348-013-1599-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00348-009-0677-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021764446", 
              "https://doi.org/10.1007/s00348-009-0677-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00348-009-0677-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021764446", 
              "https://doi.org/10.1007/s00348-009-0677-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00348-009-0677-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021764446", 
              "https://doi.org/10.1007/s00348-009-0677-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/fld.2480", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025116614"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0957-0233/24/2/024001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027125401"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00348-005-0009-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033532931", 
              "https://doi.org/10.1007/s00348-005-0009-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00348-005-0009-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033532931", 
              "https://doi.org/10.1007/s00348-005-0009-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00348-013-1557-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035296170", 
              "https://doi.org/10.1007/s00348-013-1557-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jcp.2013.01.051", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036314438"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jcp.2009.05.010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039290485"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.compfluid.2015.03.025", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041682120"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/14685240701242385", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041721486"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00348-016-2225-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042545369", 
              "https://doi.org/10.1007/s00348-016-2225-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00348-016-2225-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042545369", 
              "https://doi.org/10.1007/s00348-016-2225-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00348-004-0789-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049054430", 
              "https://doi.org/10.1007/s00348-004-0789-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00348-016-2157-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050511104", 
              "https://doi.org/10.1007/s00348-016-2157-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jcp.2016.04.022", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051289606"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00348-010-0928-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052728798", 
              "https://doi.org/10.1007/s00348-010-0928-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/s0022112007009706", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053889270"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/s0022112007009706", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053889270"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.4790640", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058069134"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1364/ao.23.001690", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1065099103"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3402/tellusa.v38i2.11706", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1071279338"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.euromechflu.2017.09.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091876940"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.compfluid.2018.04.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103155093"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00348-018-2605-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1106948747", 
              "https://doi.org/10.1007/s00348-018-2605-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/s0001924000036319", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1107445847"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-65024-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1109710393", 
              "https://doi.org/10.1007/978-3-642-65024-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-65024-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1109710393", 
              "https://doi.org/10.1007/978-3-642-65024-6"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-02", 
        "datePublishedReg": "2019-02-01", 
        "description": "A computationally efficient flow reconstruction technique is proposed, exploiting homogeneity in a given direction, to recreate three-dimensional instantaneous turbulent velocity fields from snapshots of two dimension planar fields. This methodology, termed as \u2019snapshot optimisation\u2019 or SO, can help to provide 3D data sets for studies which are currently restricted by the limitations of experimental measurement techniques. The SO method aims at optimising the error between an inlet plane with a homogeneous direction and snapshots, obtained over a sufficient period of time, on the observation plane. The observations are carried out on a plane perpendicular to the inlet plane with a shared edge normal to the homogeneity direction. The method is applicable to all flows which display a direction of homogeneity such as cylinder wake flows, channel flow, mixing layer, and jet (axisymmetric). The ability of the method is assessed with two synthetic data sets, and three experimental PIV data sets. A good reconstruction of the large-scale structures is observed for all cases. The small-scale reconstruction ability is partially limited especially for higher dimensional observation systems. POD-based SO method and averaging SO variations of the method are shown to reduce discontinuities created due to temporal mismatch in the homogenous direction providing a smooth velocity reconstruction. The volumetric reconstruction is seen to capture large-scale structures for synthetic and experimental case studies. The algorithm run time is found to be in the order of a minute providing results comparable with the reference. Such a reconstruction methodology can provide important information for data assimilation in the form of initial condition, background condition, and 3D observations. ", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s00348-018-2674-1", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1042183", 
            "issn": [
              "0723-4864", 
              "1432-1114"
            ], 
            "name": "Experiments in Fluids", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "60"
          }
        ], 
        "name": "Fast 3D flow reconstructions from 2D cross-plane observations", 
        "pagination": "30", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "2f58a8df019d5cf54071e3c801e374621149f30b2dc75e4ea18be4e8abdca232"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00348-018-2674-1"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1111638725"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00348-018-2674-1", 
          "https://app.dimensions.ai/details/publication/pub.1111638725"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T08:56", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000325_0000000325/records_100801_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs00348-018-2674-1"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00348-018-2674-1'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00348-018-2674-1'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00348-018-2674-1'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00348-018-2674-1'


     

    This table displays all metadata directly associated to this object as RDF triples.

    190 TRIPLES      21 PREDICATES      57 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00348-018-2674-1 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author N3b98bee0cdec43e1ad5ef41f5aaa55e0
    4 schema:citation sg:pub.10.1007/978-3-642-65024-6
    5 sg:pub.10.1007/bf00196474
    6 sg:pub.10.1007/s00348-004-0789-z
    7 sg:pub.10.1007/s00348-005-0009-5
    8 sg:pub.10.1007/s00348-008-0563-8
    9 sg:pub.10.1007/s00348-009-0677-7
    10 sg:pub.10.1007/s00348-010-0928-7
    11 sg:pub.10.1007/s00348-013-1557-8
    12 sg:pub.10.1007/s00348-013-1599-y
    13 sg:pub.10.1007/s00348-015-2097-1
    14 sg:pub.10.1007/s00348-016-2157-1
    15 sg:pub.10.1007/s00348-016-2225-6
    16 sg:pub.10.1007/s00348-018-2605-1
    17 sg:pub.10.1007/s003480070009
    18 https://doi.org/10.1002/fld.2480
    19 https://doi.org/10.1016/j.compfluid.2015.03.025
    20 https://doi.org/10.1016/j.compfluid.2018.04.001
    21 https://doi.org/10.1016/j.euromechflu.2017.09.001
    22 https://doi.org/10.1016/j.jcp.2009.05.010
    23 https://doi.org/10.1016/j.jcp.2013.01.051
    24 https://doi.org/10.1016/j.jcp.2016.04.022
    25 https://doi.org/10.1017/s0001924000036319
    26 https://doi.org/10.1017/s0022112007009706
    27 https://doi.org/10.1063/1.4790640
    28 https://doi.org/10.1080/14685240701242385
    29 https://doi.org/10.1088/0957-0233/16/4/011
    30 https://doi.org/10.1088/0957-0233/24/1/012001
    31 https://doi.org/10.1088/0957-0233/24/2/024001
    32 https://doi.org/10.1364/ao.23.001690
    33 https://doi.org/10.3402/tellusa.v38i2.11706
    34 schema:datePublished 2019-02
    35 schema:datePublishedReg 2019-02-01
    36 schema:description A computationally efficient flow reconstruction technique is proposed, exploiting homogeneity in a given direction, to recreate three-dimensional instantaneous turbulent velocity fields from snapshots of two dimension planar fields. This methodology, termed as ’snapshot optimisation’ or SO, can help to provide 3D data sets for studies which are currently restricted by the limitations of experimental measurement techniques. The SO method aims at optimising the error between an inlet plane with a homogeneous direction and snapshots, obtained over a sufficient period of time, on the observation plane. The observations are carried out on a plane perpendicular to the inlet plane with a shared edge normal to the homogeneity direction. The method is applicable to all flows which display a direction of homogeneity such as cylinder wake flows, channel flow, mixing layer, and jet (axisymmetric). The ability of the method is assessed with two synthetic data sets, and three experimental PIV data sets. A good reconstruction of the large-scale structures is observed for all cases. The small-scale reconstruction ability is partially limited especially for higher dimensional observation systems. POD-based SO method and averaging SO variations of the method are shown to reduce discontinuities created due to temporal mismatch in the homogenous direction providing a smooth velocity reconstruction. The volumetric reconstruction is seen to capture large-scale structures for synthetic and experimental case studies. The algorithm run time is found to be in the order of a minute providing results comparable with the reference. Such a reconstruction methodology can provide important information for data assimilation in the form of initial condition, background condition, and 3D observations.
    37 schema:genre research_article
    38 schema:inLanguage en
    39 schema:isAccessibleForFree false
    40 schema:isPartOf N877c4e8fc5a1464cbdce2afea2c3c720
    41 N9c41cf5d70904941b179705928381a3c
    42 sg:journal.1042183
    43 schema:name Fast 3D flow reconstructions from 2D cross-plane observations
    44 schema:pagination 30
    45 schema:productId N2b789c629be84a38a8a60415cd27e4fd
    46 N71180b4165684578a5746cd21830c6b1
    47 N8630b4c5c1164b859412559cff27c520
    48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111638725
    49 https://doi.org/10.1007/s00348-018-2674-1
    50 schema:sdDatePublished 2019-04-11T08:56
    51 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    52 schema:sdPublisher Nf9853c11a4ae437699bf1d90e086464a
    53 schema:url https://link.springer.com/10.1007%2Fs00348-018-2674-1
    54 sgo:license sg:explorer/license/
    55 sgo:sdDataset articles
    56 rdf:type schema:ScholarlyArticle
    57 N2b789c629be84a38a8a60415cd27e4fd schema:name doi
    58 schema:value 10.1007/s00348-018-2674-1
    59 rdf:type schema:PropertyValue
    60 N3b98bee0cdec43e1ad5ef41f5aaa55e0 rdf:first sg:person.07532521115.06
    61 rdf:rest N586ebae829dc4abda824b3d4d0275c77
    62 N586ebae829dc4abda824b3d4d0275c77 rdf:first sg:person.012306405545.58
    63 rdf:rest Nbe9f90ec9dea4d19b7bc5accf2c3e058
    64 N71180b4165684578a5746cd21830c6b1 schema:name dimensions_id
    65 schema:value pub.1111638725
    66 rdf:type schema:PropertyValue
    67 N8630b4c5c1164b859412559cff27c520 schema:name readcube_id
    68 schema:value 2f58a8df019d5cf54071e3c801e374621149f30b2dc75e4ea18be4e8abdca232
    69 rdf:type schema:PropertyValue
    70 N877c4e8fc5a1464cbdce2afea2c3c720 schema:issueNumber 2
    71 rdf:type schema:PublicationIssue
    72 N8d2622b391ba4947ba60e295310e91d4 rdf:first sg:person.012057270222.60
    73 rdf:rest rdf:nil
    74 N9c41cf5d70904941b179705928381a3c schema:volumeNumber 60
    75 rdf:type schema:PublicationVolume
    76 Nbe9f90ec9dea4d19b7bc5accf2c3e058 rdf:first sg:person.010647232045.05
    77 rdf:rest N8d2622b391ba4947ba60e295310e91d4
    78 Nf9853c11a4ae437699bf1d90e086464a schema:name Springer Nature - SN SciGraph project
    79 rdf:type schema:Organization
    80 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    81 schema:name Information and Computing Sciences
    82 rdf:type schema:DefinedTerm
    83 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    84 schema:name Artificial Intelligence and Image Processing
    85 rdf:type schema:DefinedTerm
    86 sg:journal.1042183 schema:issn 0723-4864
    87 1432-1114
    88 schema:name Experiments in Fluids
    89 rdf:type schema:Periodical
    90 sg:person.010647232045.05 schema:affiliation https://www.grid.ac/institutes/grid.48142.3b
    91 schema:familyName Heitz
    92 schema:givenName Dominique
    93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010647232045.05
    94 rdf:type schema:Person
    95 sg:person.012057270222.60 schema:affiliation https://www.grid.ac/institutes/grid.48142.3b
    96 schema:familyName Fiabane
    97 schema:givenName Lionel
    98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012057270222.60
    99 rdf:type schema:Person
    100 sg:person.012306405545.58 schema:affiliation https://www.grid.ac/institutes/grid.5328.c
    101 schema:familyName Memin
    102 schema:givenName Etienne
    103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012306405545.58
    104 rdf:type schema:Person
    105 sg:person.07532521115.06 schema:affiliation https://www.grid.ac/institutes/grid.5328.c
    106 schema:familyName Chandramouli
    107 schema:givenName Pranav
    108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07532521115.06
    109 rdf:type schema:Person
    110 sg:pub.10.1007/978-3-642-65024-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109710393
    111 https://doi.org/10.1007/978-3-642-65024-6
    112 rdf:type schema:CreativeWork
    113 sg:pub.10.1007/bf00196474 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016922315
    114 https://doi.org/10.1007/bf00196474
    115 rdf:type schema:CreativeWork
    116 sg:pub.10.1007/s00348-004-0789-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1049054430
    117 https://doi.org/10.1007/s00348-004-0789-z
    118 rdf:type schema:CreativeWork
    119 sg:pub.10.1007/s00348-005-0009-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033532931
    120 https://doi.org/10.1007/s00348-005-0009-5
    121 rdf:type schema:CreativeWork
    122 sg:pub.10.1007/s00348-008-0563-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010359986
    123 https://doi.org/10.1007/s00348-008-0563-8
    124 rdf:type schema:CreativeWork
    125 sg:pub.10.1007/s00348-009-0677-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021764446
    126 https://doi.org/10.1007/s00348-009-0677-7
    127 rdf:type schema:CreativeWork
    128 sg:pub.10.1007/s00348-010-0928-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052728798
    129 https://doi.org/10.1007/s00348-010-0928-7
    130 rdf:type schema:CreativeWork
    131 sg:pub.10.1007/s00348-013-1557-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035296170
    132 https://doi.org/10.1007/s00348-013-1557-8
    133 rdf:type schema:CreativeWork
    134 sg:pub.10.1007/s00348-013-1599-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1017399597
    135 https://doi.org/10.1007/s00348-013-1599-y
    136 rdf:type schema:CreativeWork
    137 sg:pub.10.1007/s00348-015-2097-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002007379
    138 https://doi.org/10.1007/s00348-015-2097-1
    139 rdf:type schema:CreativeWork
    140 sg:pub.10.1007/s00348-016-2157-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050511104
    141 https://doi.org/10.1007/s00348-016-2157-1
    142 rdf:type schema:CreativeWork
    143 sg:pub.10.1007/s00348-016-2225-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042545369
    144 https://doi.org/10.1007/s00348-016-2225-6
    145 rdf:type schema:CreativeWork
    146 sg:pub.10.1007/s00348-018-2605-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106948747
    147 https://doi.org/10.1007/s00348-018-2605-1
    148 rdf:type schema:CreativeWork
    149 sg:pub.10.1007/s003480070009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016057977
    150 https://doi.org/10.1007/s003480070009
    151 rdf:type schema:CreativeWork
    152 https://doi.org/10.1002/fld.2480 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025116614
    153 rdf:type schema:CreativeWork
    154 https://doi.org/10.1016/j.compfluid.2015.03.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041682120
    155 rdf:type schema:CreativeWork
    156 https://doi.org/10.1016/j.compfluid.2018.04.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103155093
    157 rdf:type schema:CreativeWork
    158 https://doi.org/10.1016/j.euromechflu.2017.09.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091876940
    159 rdf:type schema:CreativeWork
    160 https://doi.org/10.1016/j.jcp.2009.05.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039290485
    161 rdf:type schema:CreativeWork
    162 https://doi.org/10.1016/j.jcp.2013.01.051 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036314438
    163 rdf:type schema:CreativeWork
    164 https://doi.org/10.1016/j.jcp.2016.04.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051289606
    165 rdf:type schema:CreativeWork
    166 https://doi.org/10.1017/s0001924000036319 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107445847
    167 rdf:type schema:CreativeWork
    168 https://doi.org/10.1017/s0022112007009706 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053889270
    169 rdf:type schema:CreativeWork
    170 https://doi.org/10.1063/1.4790640 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058069134
    171 rdf:type schema:CreativeWork
    172 https://doi.org/10.1080/14685240701242385 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041721486
    173 rdf:type schema:CreativeWork
    174 https://doi.org/10.1088/0957-0233/16/4/011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011647965
    175 rdf:type schema:CreativeWork
    176 https://doi.org/10.1088/0957-0233/24/1/012001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007106650
    177 rdf:type schema:CreativeWork
    178 https://doi.org/10.1088/0957-0233/24/2/024001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027125401
    179 rdf:type schema:CreativeWork
    180 https://doi.org/10.1364/ao.23.001690 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065099103
    181 rdf:type schema:CreativeWork
    182 https://doi.org/10.3402/tellusa.v38i2.11706 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071279338
    183 rdf:type schema:CreativeWork
    184 https://www.grid.ac/institutes/grid.48142.3b schema:alternateName National Research Institute of Science and Technology for Environment and Agriculture
    185 schema:name INRIA, Fluminance group, Campus Universitaire de Beaulieu, 35042, Rennes Cedex, France
    186 Irstea, UR OPAALE, 35044, Rennes Cedex, France
    187 rdf:type schema:Organization
    188 https://www.grid.ac/institutes/grid.5328.c schema:alternateName French Institute for Research in Computer Science and Automation
    189 schema:name INRIA, Fluminance group, Campus Universitaire de Beaulieu, 35042, Rennes Cedex, France
    190 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...