Ontology type: schema:ScholarlyArticle
2015-01-31
AUTHORSP. P. Khramtsov, O. G. Penyazkov, I. N. Shatan
ABSTRACTThe paper discusses the principles of optical testing of transparent objects using the Talbot images method and its applicability to diagnostic of flames. The experimental study was performed for premixed methane–air flame formed by an axisymmetric nozzle. The local deflection angles of the probe radiation were determined from measurements of the relative displacements of intensity maxima of the Talbot image which is caused by passing of light through the flame. The Abel integral equation was solved to reconstruct the refractive index distribution in the flame. Calculation of the temperature field from the refractive index data was based on neglecting the spatial variation of the component composition. Inaccuracy of the calculations was evaluated by comparing the results with the thermocouple measurements. The results demonstrate that the Talbot images method can be used to measure the temperature distribution in axisymmetric reacting gas flows with high spatial resolution. More... »
PAGES31
http://scigraph.springernature.com/pub.10.1007/s00348-015-1906-x
DOIhttp://dx.doi.org/10.1007/s00348-015-1906-x
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1006490081
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Engineering",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0901",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Aerospace Engineering",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0913",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mechanical Engineering",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Interdisciplinary Engineering",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "A.V. Luikov Heat and Mass Transfer Institute, National Academy of Sciences of Belarus, 220072, Minsk, Republic of Belarus",
"id": "http://www.grid.ac/institutes/grid.423488.1",
"name": [
"A.V. Luikov Heat and Mass Transfer Institute, National Academy of Sciences of Belarus, 220072, Minsk, Republic of Belarus"
],
"type": "Organization"
},
"familyName": "Khramtsov",
"givenName": "P. P.",
"id": "sg:person.015120053634.12",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015120053634.12"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "A.V. Luikov Heat and Mass Transfer Institute, National Academy of Sciences of Belarus, 220072, Minsk, Republic of Belarus",
"id": "http://www.grid.ac/institutes/grid.423488.1",
"name": [
"A.V. Luikov Heat and Mass Transfer Institute, National Academy of Sciences of Belarus, 220072, Minsk, Republic of Belarus"
],
"type": "Organization"
},
"familyName": "Penyazkov",
"givenName": "O. G.",
"id": "sg:person.011274733475.05",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011274733475.05"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "A.V. Luikov Heat and Mass Transfer Institute, National Academy of Sciences of Belarus, 220072, Minsk, Republic of Belarus",
"id": "http://www.grid.ac/institutes/grid.423488.1",
"name": [
"A.V. Luikov Heat and Mass Transfer Institute, National Academy of Sciences of Belarus, 220072, Minsk, Republic of Belarus"
],
"type": "Organization"
},
"familyName": "Shatan",
"givenName": "I. N.",
"id": "sg:person.013605674751.23",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013605674751.23"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/s10765-010-0800-2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1002589138",
"https://doi.org/10.1007/s10765-010-0800-2"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10891-013-0829-8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1005503802",
"https://doi.org/10.1007/s10891-013-0829-8"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00348-007-0348-5",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1017558882",
"https://doi.org/10.1007/s00348-007-0348-5"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf00408770",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1009328177",
"https://doi.org/10.1007/bf00408770"
],
"type": "CreativeWork"
}
],
"datePublished": "2015-01-31",
"datePublishedReg": "2015-01-31",
"description": "The paper discusses the principles of optical testing of transparent objects using the Talbot images method and its applicability to diagnostic of flames. The experimental study was performed for premixed methane\u2013air flame formed by an axisymmetric nozzle. The local deflection angles of the probe radiation were determined from measurements of the relative displacements of intensity maxima of the Talbot image which is caused by passing of light through the flame. The Abel integral equation was solved to reconstruct the refractive index distribution in the flame. Calculation of the temperature field from the refractive index data was based on neglecting the spatial variation of the component composition. Inaccuracy of the calculations was evaluated by comparing the results with the thermocouple measurements. The results demonstrate that the Talbot images method can be used to measure the temperature distribution in axisymmetric reacting gas flows with high spatial resolution.",
"genre": "article",
"id": "sg:pub.10.1007/s00348-015-1906-x",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1042183",
"issn": [
"0723-4864",
"1432-1114"
],
"name": "Experiments in Fluids",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "2",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "56"
}
],
"keywords": [
"Talbot images",
"refractive index distribution",
"refractive index data",
"probe radiation",
"optical testing",
"index distribution",
"methane-air flames",
"high spatial resolution",
"intensity maxima",
"transparent objects",
"local deflection angle",
"deflection angle",
"spatial resolution",
"premixed methane-air flames",
"temperature measurements",
"image method",
"calculations",
"thermocouple measurements",
"gas flow",
"measurements",
"index data",
"radiation",
"Abel integral equation",
"light",
"temperature distribution",
"resolution",
"experimental study",
"field",
"diagnostics",
"relative displacement",
"flame",
"distribution",
"spatial variation",
"angle",
"images",
"maximum",
"temperature field",
"objects",
"integral equations",
"equations",
"axisymmetric nozzles",
"method",
"nozzle",
"principles",
"results",
"displacement",
"composition",
"variation",
"component composition",
"inaccuracy",
"flow",
"applicability",
"data",
"paper",
"testing",
"study"
],
"name": "Temperature measurements in an axisymmetric methane\u2013air flame using Talbot images",
"pagination": "31",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1006490081"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s00348-015-1906-x"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s00348-015-1906-x",
"https://app.dimensions.ai/details/publication/pub.1006490081"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-10T10:10",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_654.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s00348-015-1906-x"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00348-015-1906-x'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00348-015-1906-x'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00348-015-1906-x'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00348-015-1906-x'
This table displays all metadata directly associated to this object as RDF triples.
152 TRIPLES
22 PREDICATES
87 URIs
73 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/s00348-015-1906-x | schema:about | anzsrc-for:09 |
2 | ″ | ″ | anzsrc-for:0901 |
3 | ″ | ″ | anzsrc-for:0913 |
4 | ″ | ″ | anzsrc-for:0915 |
5 | ″ | schema:author | Nca0fb5291a90481f9d47c1134961a74a |
6 | ″ | schema:citation | sg:pub.10.1007/bf00408770 |
7 | ″ | ″ | sg:pub.10.1007/s00348-007-0348-5 |
8 | ″ | ″ | sg:pub.10.1007/s10765-010-0800-2 |
9 | ″ | ″ | sg:pub.10.1007/s10891-013-0829-8 |
10 | ″ | schema:datePublished | 2015-01-31 |
11 | ″ | schema:datePublishedReg | 2015-01-31 |
12 | ″ | schema:description | The paper discusses the principles of optical testing of transparent objects using the Talbot images method and its applicability to diagnostic of flames. The experimental study was performed for premixed methane–air flame formed by an axisymmetric nozzle. The local deflection angles of the probe radiation were determined from measurements of the relative displacements of intensity maxima of the Talbot image which is caused by passing of light through the flame. The Abel integral equation was solved to reconstruct the refractive index distribution in the flame. Calculation of the temperature field from the refractive index data was based on neglecting the spatial variation of the component composition. Inaccuracy of the calculations was evaluated by comparing the results with the thermocouple measurements. The results demonstrate that the Talbot images method can be used to measure the temperature distribution in axisymmetric reacting gas flows with high spatial resolution. |
13 | ″ | schema:genre | article |
14 | ″ | schema:inLanguage | en |
15 | ″ | schema:isAccessibleForFree | false |
16 | ″ | schema:isPartOf | N7386c3e8dccc4de8bb6c7fc28f25adad |
17 | ″ | ″ | N74634e4bb3124ca4b49798c794bb1dbe |
18 | ″ | ″ | sg:journal.1042183 |
19 | ″ | schema:keywords | Abel integral equation |
20 | ″ | ″ | Talbot images |
21 | ″ | ″ | angle |
22 | ″ | ″ | applicability |
23 | ″ | ″ | axisymmetric nozzles |
24 | ″ | ″ | calculations |
25 | ″ | ″ | component composition |
26 | ″ | ″ | composition |
27 | ″ | ″ | data |
28 | ″ | ″ | deflection angle |
29 | ″ | ″ | diagnostics |
30 | ″ | ″ | displacement |
31 | ″ | ″ | distribution |
32 | ″ | ″ | equations |
33 | ″ | ″ | experimental study |
34 | ″ | ″ | field |
35 | ″ | ″ | flame |
36 | ″ | ″ | flow |
37 | ″ | ″ | gas flow |
38 | ″ | ″ | high spatial resolution |
39 | ″ | ″ | image method |
40 | ″ | ″ | images |
41 | ″ | ″ | inaccuracy |
42 | ″ | ″ | index data |
43 | ″ | ″ | index distribution |
44 | ″ | ″ | integral equations |
45 | ″ | ″ | intensity maxima |
46 | ″ | ″ | light |
47 | ″ | ″ | local deflection angle |
48 | ″ | ″ | maximum |
49 | ″ | ″ | measurements |
50 | ″ | ″ | methane-air flames |
51 | ″ | ″ | method |
52 | ″ | ″ | nozzle |
53 | ″ | ″ | objects |
54 | ″ | ″ | optical testing |
55 | ″ | ″ | paper |
56 | ″ | ″ | premixed methane-air flames |
57 | ″ | ″ | principles |
58 | ″ | ″ | probe radiation |
59 | ″ | ″ | radiation |
60 | ″ | ″ | refractive index data |
61 | ″ | ″ | refractive index distribution |
62 | ″ | ″ | relative displacement |
63 | ″ | ″ | resolution |
64 | ″ | ″ | results |
65 | ″ | ″ | spatial resolution |
66 | ″ | ″ | spatial variation |
67 | ″ | ″ | study |
68 | ″ | ″ | temperature distribution |
69 | ″ | ″ | temperature field |
70 | ″ | ″ | temperature measurements |
71 | ″ | ″ | testing |
72 | ″ | ″ | thermocouple measurements |
73 | ″ | ″ | transparent objects |
74 | ″ | ″ | variation |
75 | ″ | schema:name | Temperature measurements in an axisymmetric methane–air flame using Talbot images |
76 | ″ | schema:pagination | 31 |
77 | ″ | schema:productId | N834c04cb4d244664ae386867f448efdf |
78 | ″ | ″ | Nd31cac63213e49dd86f20a48c266e86d |
79 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1006490081 |
80 | ″ | ″ | https://doi.org/10.1007/s00348-015-1906-x |
81 | ″ | schema:sdDatePublished | 2022-05-10T10:10 |
82 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
83 | ″ | schema:sdPublisher | N3f0c71a58e0a4c47a07ea6e79f47c430 |
84 | ″ | schema:url | https://doi.org/10.1007/s00348-015-1906-x |
85 | ″ | sgo:license | sg:explorer/license/ |
86 | ″ | sgo:sdDataset | articles |
87 | ″ | rdf:type | schema:ScholarlyArticle |
88 | N38228740409c41cca9a99c16d3fe200d | rdf:first | sg:person.011274733475.05 |
89 | ″ | rdf:rest | Nf2026395f1644a50ba99d67b3279f9cf |
90 | N3f0c71a58e0a4c47a07ea6e79f47c430 | schema:name | Springer Nature - SN SciGraph project |
91 | ″ | rdf:type | schema:Organization |
92 | N7386c3e8dccc4de8bb6c7fc28f25adad | schema:volumeNumber | 56 |
93 | ″ | rdf:type | schema:PublicationVolume |
94 | N74634e4bb3124ca4b49798c794bb1dbe | schema:issueNumber | 2 |
95 | ″ | rdf:type | schema:PublicationIssue |
96 | N834c04cb4d244664ae386867f448efdf | schema:name | doi |
97 | ″ | schema:value | 10.1007/s00348-015-1906-x |
98 | ″ | rdf:type | schema:PropertyValue |
99 | Nca0fb5291a90481f9d47c1134961a74a | rdf:first | sg:person.015120053634.12 |
100 | ″ | rdf:rest | N38228740409c41cca9a99c16d3fe200d |
101 | Nd31cac63213e49dd86f20a48c266e86d | schema:name | dimensions_id |
102 | ″ | schema:value | pub.1006490081 |
103 | ″ | rdf:type | schema:PropertyValue |
104 | Nf2026395f1644a50ba99d67b3279f9cf | rdf:first | sg:person.013605674751.23 |
105 | ″ | rdf:rest | rdf:nil |
106 | anzsrc-for:09 | schema:inDefinedTermSet | anzsrc-for: |
107 | ″ | schema:name | Engineering |
108 | ″ | rdf:type | schema:DefinedTerm |
109 | anzsrc-for:0901 | schema:inDefinedTermSet | anzsrc-for: |
110 | ″ | schema:name | Aerospace Engineering |
111 | ″ | rdf:type | schema:DefinedTerm |
112 | anzsrc-for:0913 | schema:inDefinedTermSet | anzsrc-for: |
113 | ″ | schema:name | Mechanical Engineering |
114 | ″ | rdf:type | schema:DefinedTerm |
115 | anzsrc-for:0915 | schema:inDefinedTermSet | anzsrc-for: |
116 | ″ | schema:name | Interdisciplinary Engineering |
117 | ″ | rdf:type | schema:DefinedTerm |
118 | sg:journal.1042183 | schema:issn | 0723-4864 |
119 | ″ | ″ | 1432-1114 |
120 | ″ | schema:name | Experiments in Fluids |
121 | ″ | schema:publisher | Springer Nature |
122 | ″ | rdf:type | schema:Periodical |
123 | sg:person.011274733475.05 | schema:affiliation | grid-institutes:grid.423488.1 |
124 | ″ | schema:familyName | Penyazkov |
125 | ″ | schema:givenName | O. G. |
126 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011274733475.05 |
127 | ″ | rdf:type | schema:Person |
128 | sg:person.013605674751.23 | schema:affiliation | grid-institutes:grid.423488.1 |
129 | ″ | schema:familyName | Shatan |
130 | ″ | schema:givenName | I. N. |
131 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013605674751.23 |
132 | ″ | rdf:type | schema:Person |
133 | sg:person.015120053634.12 | schema:affiliation | grid-institutes:grid.423488.1 |
134 | ″ | schema:familyName | Khramtsov |
135 | ″ | schema:givenName | P. P. |
136 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015120053634.12 |
137 | ″ | rdf:type | schema:Person |
138 | sg:pub.10.1007/bf00408770 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1009328177 |
139 | ″ | ″ | https://doi.org/10.1007/bf00408770 |
140 | ″ | rdf:type | schema:CreativeWork |
141 | sg:pub.10.1007/s00348-007-0348-5 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1017558882 |
142 | ″ | ″ | https://doi.org/10.1007/s00348-007-0348-5 |
143 | ″ | rdf:type | schema:CreativeWork |
144 | sg:pub.10.1007/s10765-010-0800-2 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1002589138 |
145 | ″ | ″ | https://doi.org/10.1007/s10765-010-0800-2 |
146 | ″ | rdf:type | schema:CreativeWork |
147 | sg:pub.10.1007/s10891-013-0829-8 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1005503802 |
148 | ″ | ″ | https://doi.org/10.1007/s10891-013-0829-8 |
149 | ″ | rdf:type | schema:CreativeWork |
150 | grid-institutes:grid.423488.1 | schema:alternateName | A.V. Luikov Heat and Mass Transfer Institute, National Academy of Sciences of Belarus, 220072, Minsk, Republic of Belarus |
151 | ″ | schema:name | A.V. Luikov Heat and Mass Transfer Institute, National Academy of Sciences of Belarus, 220072, Minsk, Republic of Belarus |
152 | ″ | rdf:type | schema:Organization |