Temperature measurements in an axisymmetric methane–air flame using Talbot images View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2015-01-31

AUTHORS

P. P. Khramtsov, O. G. Penyazkov, I. N. Shatan

ABSTRACT

The paper discusses the principles of optical testing of transparent objects using the Talbot images method and its applicability to diagnostic of flames. The experimental study was performed for premixed methane–air flame formed by an axisymmetric nozzle. The local deflection angles of the probe radiation were determined from measurements of the relative displacements of intensity maxima of the Talbot image which is caused by passing of light through the flame. The Abel integral equation was solved to reconstruct the refractive index distribution in the flame. Calculation of the temperature field from the refractive index data was based on neglecting the spatial variation of the component composition. Inaccuracy of the calculations was evaluated by comparing the results with the thermocouple measurements. The results demonstrate that the Talbot images method can be used to measure the temperature distribution in axisymmetric reacting gas flows with high spatial resolution. More... »

PAGES

31

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00348-015-1906-x

DOI

http://dx.doi.org/10.1007/s00348-015-1906-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1006490081


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0901", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Aerospace Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0913", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mechanical Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "A.V. Luikov Heat and Mass Transfer Institute, National Academy of Sciences of Belarus, 220072, Minsk, Republic of Belarus", 
          "id": "http://www.grid.ac/institutes/grid.423488.1", 
          "name": [
            "A.V. Luikov Heat and Mass Transfer Institute, National Academy of Sciences of Belarus, 220072, Minsk, Republic of Belarus"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Khramtsov", 
        "givenName": "P. P.", 
        "id": "sg:person.015120053634.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015120053634.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "A.V. Luikov Heat and Mass Transfer Institute, National Academy of Sciences of Belarus, 220072, Minsk, Republic of Belarus", 
          "id": "http://www.grid.ac/institutes/grid.423488.1", 
          "name": [
            "A.V. Luikov Heat and Mass Transfer Institute, National Academy of Sciences of Belarus, 220072, Minsk, Republic of Belarus"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Penyazkov", 
        "givenName": "O. G.", 
        "id": "sg:person.011274733475.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011274733475.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "A.V. Luikov Heat and Mass Transfer Institute, National Academy of Sciences of Belarus, 220072, Minsk, Republic of Belarus", 
          "id": "http://www.grid.ac/institutes/grid.423488.1", 
          "name": [
            "A.V. Luikov Heat and Mass Transfer Institute, National Academy of Sciences of Belarus, 220072, Minsk, Republic of Belarus"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shatan", 
        "givenName": "I. N.", 
        "id": "sg:person.013605674751.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013605674751.23"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf00408770", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009328177", 
          "https://doi.org/10.1007/bf00408770"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10891-013-0829-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005503802", 
          "https://doi.org/10.1007/s10891-013-0829-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10765-010-0800-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002589138", 
          "https://doi.org/10.1007/s10765-010-0800-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00348-007-0348-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017558882", 
          "https://doi.org/10.1007/s00348-007-0348-5"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-01-31", 
    "datePublishedReg": "2015-01-31", 
    "description": "The paper discusses the principles of optical testing of transparent objects using the Talbot images method and its applicability to diagnostic of flames. The experimental study was performed for premixed methane\u2013air flame formed by an axisymmetric nozzle. The local deflection angles of the probe radiation were determined from measurements of the relative displacements of intensity maxima of the Talbot image which is caused by passing of light through the flame. The Abel integral equation was solved to reconstruct the refractive index distribution in the flame. Calculation of the temperature field from the refractive index data was based on neglecting the spatial variation of the component composition. Inaccuracy of the calculations was evaluated by comparing the results with the thermocouple measurements. The results demonstrate that the Talbot images method can be used to measure the temperature distribution in axisymmetric reacting gas flows with high spatial resolution.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00348-015-1906-x", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1042183", 
        "issn": [
          "0723-4864", 
          "1432-1114"
        ], 
        "name": "Experiments in Fluids", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "56"
      }
    ], 
    "keywords": [
      "methane-air flames", 
      "premixed methane-air flames", 
      "temperature field", 
      "temperature distribution", 
      "local deflection angle", 
      "thermocouple measurements", 
      "gas flow", 
      "image method", 
      "axisymmetric nozzles", 
      "temperature measurements", 
      "flame", 
      "relative displacement", 
      "high spatial resolution", 
      "optical testing", 
      "deflection angle", 
      "experimental study", 
      "spatial resolution", 
      "refractive index distribution", 
      "Talbot images", 
      "transparent objects", 
      "nozzle", 
      "integral equations", 
      "measurements", 
      "spatial variation", 
      "refractive index data", 
      "index distribution", 
      "flow", 
      "probe radiation", 
      "component composition", 
      "displacement", 
      "Abel integral equation", 
      "distribution", 
      "calculations", 
      "angle", 
      "method", 
      "intensity maxima", 
      "equations", 
      "field", 
      "images", 
      "results", 
      "inaccuracy", 
      "applicability", 
      "resolution", 
      "radiation", 
      "testing", 
      "composition", 
      "diagnostics", 
      "maximum", 
      "principles", 
      "variation", 
      "index data", 
      "light", 
      "objects", 
      "data", 
      "study", 
      "paper", 
      "Talbot images method", 
      "diagnostic of flames", 
      "axisymmetric methane\u2013air flame"
    ], 
    "name": "Temperature measurements in an axisymmetric methane\u2013air flame using Talbot images", 
    "pagination": "31", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1006490081"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00348-015-1906-x"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00348-015-1906-x", 
      "https://app.dimensions.ai/details/publication/pub.1006490081"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:36", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_667.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00348-015-1906-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00348-015-1906-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00348-015-1906-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00348-015-1906-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00348-015-1906-x'


 

This table displays all metadata directly associated to this object as RDF triples.

155 TRIPLES      22 PREDICATES      90 URIs      76 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00348-015-1906-x schema:about anzsrc-for:09
2 anzsrc-for:0901
3 anzsrc-for:0913
4 anzsrc-for:0915
5 schema:author N9321d7fa464c43edb0c07da957d7da0f
6 schema:citation sg:pub.10.1007/bf00408770
7 sg:pub.10.1007/s00348-007-0348-5
8 sg:pub.10.1007/s10765-010-0800-2
9 sg:pub.10.1007/s10891-013-0829-8
10 schema:datePublished 2015-01-31
11 schema:datePublishedReg 2015-01-31
12 schema:description The paper discusses the principles of optical testing of transparent objects using the Talbot images method and its applicability to diagnostic of flames. The experimental study was performed for premixed methane–air flame formed by an axisymmetric nozzle. The local deflection angles of the probe radiation were determined from measurements of the relative displacements of intensity maxima of the Talbot image which is caused by passing of light through the flame. The Abel integral equation was solved to reconstruct the refractive index distribution in the flame. Calculation of the temperature field from the refractive index data was based on neglecting the spatial variation of the component composition. Inaccuracy of the calculations was evaluated by comparing the results with the thermocouple measurements. The results demonstrate that the Talbot images method can be used to measure the temperature distribution in axisymmetric reacting gas flows with high spatial resolution.
13 schema:genre article
14 schema:inLanguage en
15 schema:isAccessibleForFree false
16 schema:isPartOf N1a510cea968c42d19dc0ccd31da9d3ce
17 Nd78dd3243ee643dfa8bbccd5b52157a4
18 sg:journal.1042183
19 schema:keywords Abel integral equation
20 Talbot images
21 Talbot images method
22 angle
23 applicability
24 axisymmetric methane–air flame
25 axisymmetric nozzles
26 calculations
27 component composition
28 composition
29 data
30 deflection angle
31 diagnostic of flames
32 diagnostics
33 displacement
34 distribution
35 equations
36 experimental study
37 field
38 flame
39 flow
40 gas flow
41 high spatial resolution
42 image method
43 images
44 inaccuracy
45 index data
46 index distribution
47 integral equations
48 intensity maxima
49 light
50 local deflection angle
51 maximum
52 measurements
53 methane-air flames
54 method
55 nozzle
56 objects
57 optical testing
58 paper
59 premixed methane-air flames
60 principles
61 probe radiation
62 radiation
63 refractive index data
64 refractive index distribution
65 relative displacement
66 resolution
67 results
68 spatial resolution
69 spatial variation
70 study
71 temperature distribution
72 temperature field
73 temperature measurements
74 testing
75 thermocouple measurements
76 transparent objects
77 variation
78 schema:name Temperature measurements in an axisymmetric methane–air flame using Talbot images
79 schema:pagination 31
80 schema:productId N4492707059e643fcbbed315fefbefbbc
81 Nf6208cf93ab247e0912c4e507a599745
82 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006490081
83 https://doi.org/10.1007/s00348-015-1906-x
84 schema:sdDatePublished 2022-01-01T18:36
85 schema:sdLicense https://scigraph.springernature.com/explorer/license/
86 schema:sdPublisher N8c36e6931550420d9d4611e94c121bab
87 schema:url https://doi.org/10.1007/s00348-015-1906-x
88 sgo:license sg:explorer/license/
89 sgo:sdDataset articles
90 rdf:type schema:ScholarlyArticle
91 N1a510cea968c42d19dc0ccd31da9d3ce schema:issueNumber 2
92 rdf:type schema:PublicationIssue
93 N4492707059e643fcbbed315fefbefbbc schema:name dimensions_id
94 schema:value pub.1006490081
95 rdf:type schema:PropertyValue
96 N61f38eccb3ca4d85ab7dba57c9c4c7db rdf:first sg:person.013605674751.23
97 rdf:rest rdf:nil
98 N7fa9371d6f084b068db692f5fdca7c24 rdf:first sg:person.011274733475.05
99 rdf:rest N61f38eccb3ca4d85ab7dba57c9c4c7db
100 N8c36e6931550420d9d4611e94c121bab schema:name Springer Nature - SN SciGraph project
101 rdf:type schema:Organization
102 N9321d7fa464c43edb0c07da957d7da0f rdf:first sg:person.015120053634.12
103 rdf:rest N7fa9371d6f084b068db692f5fdca7c24
104 Nd78dd3243ee643dfa8bbccd5b52157a4 schema:volumeNumber 56
105 rdf:type schema:PublicationVolume
106 Nf6208cf93ab247e0912c4e507a599745 schema:name doi
107 schema:value 10.1007/s00348-015-1906-x
108 rdf:type schema:PropertyValue
109 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
110 schema:name Engineering
111 rdf:type schema:DefinedTerm
112 anzsrc-for:0901 schema:inDefinedTermSet anzsrc-for:
113 schema:name Aerospace Engineering
114 rdf:type schema:DefinedTerm
115 anzsrc-for:0913 schema:inDefinedTermSet anzsrc-for:
116 schema:name Mechanical Engineering
117 rdf:type schema:DefinedTerm
118 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
119 schema:name Interdisciplinary Engineering
120 rdf:type schema:DefinedTerm
121 sg:journal.1042183 schema:issn 0723-4864
122 1432-1114
123 schema:name Experiments in Fluids
124 schema:publisher Springer Nature
125 rdf:type schema:Periodical
126 sg:person.011274733475.05 schema:affiliation grid-institutes:grid.423488.1
127 schema:familyName Penyazkov
128 schema:givenName O. G.
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011274733475.05
130 rdf:type schema:Person
131 sg:person.013605674751.23 schema:affiliation grid-institutes:grid.423488.1
132 schema:familyName Shatan
133 schema:givenName I. N.
134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013605674751.23
135 rdf:type schema:Person
136 sg:person.015120053634.12 schema:affiliation grid-institutes:grid.423488.1
137 schema:familyName Khramtsov
138 schema:givenName P. P.
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015120053634.12
140 rdf:type schema:Person
141 sg:pub.10.1007/bf00408770 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009328177
142 https://doi.org/10.1007/bf00408770
143 rdf:type schema:CreativeWork
144 sg:pub.10.1007/s00348-007-0348-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017558882
145 https://doi.org/10.1007/s00348-007-0348-5
146 rdf:type schema:CreativeWork
147 sg:pub.10.1007/s10765-010-0800-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002589138
148 https://doi.org/10.1007/s10765-010-0800-2
149 rdf:type schema:CreativeWork
150 sg:pub.10.1007/s10891-013-0829-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005503802
151 https://doi.org/10.1007/s10891-013-0829-8
152 rdf:type schema:CreativeWork
153 grid-institutes:grid.423488.1 schema:alternateName A.V. Luikov Heat and Mass Transfer Institute, National Academy of Sciences of Belarus, 220072, Minsk, Republic of Belarus
154 schema:name A.V. Luikov Heat and Mass Transfer Institute, National Academy of Sciences of Belarus, 220072, Minsk, Republic of Belarus
155 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...