Quantification of dispersed phase concentration using light sheet imaging methods View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2012-03

AUTHORS

Philip L. Knowles, Ken T. Kiger

ABSTRACT

With the prevalence of particle image velocimetry (PIV) as a quantitative tool for fluid mechanics diagnostics, its application for analyzing complicated multiphase flows has been steadily increasing over the last several decades. While the primary issue in using PIV for multiphase flows is in separating the information of the phases for independent analysis with a minimum of spurious “cross-talk,” an equally crucial but often overlooked point is in the accurate quantitative measurement of the dispersed phase concentration. Accurate concentration measurement is important due to the fact that the dispersed phase is often heterogeneously distributed in both space and time, either due to a non-uniformity of the source of particulates (such as a spray nozzle or sediment boundary) or due to inertial migration of the particles even from originally homogeneous spatial distributions. In the current work, we examine the effects of light sheet profile distortion and attenuation by tracer seeding particles, as well as reflected light from local wall boundaries on the effective light sheet thickness. The effective thickness is critical for concentration measurements, as it dictates the dispersed phase detection volume. A direct calibration method is demonstrated to measure the effective light sheet thickness in a water/glass bead system, which shows that systematic bias errors on the order of 30% can result if the reflective bed condition is not accounted for, and the errors can be as high as 50% or more if a single-point measure of the sheet width is used. More... »

PAGES

697-708

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00348-011-1100-8

DOI

http://dx.doi.org/10.1007/s00348-011-1100-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1034436013


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Naval Air Systems Command", 
          "id": "https://www.grid.ac/institutes/grid.420427.7", 
          "name": [
            "Applied Aerodynamics & Store Separation Branch, NAVAIR, Patuxent River, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Knowles", 
        "givenName": "Philip L.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Maryland, College Park", 
          "id": "https://www.grid.ac/institutes/grid.164295.d", 
          "name": [
            "Department of Mechanical Engineering, University of Maryland, College Park, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kiger", 
        "givenName": "Ken T.", 
        "id": "sg:person.014607455372.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014607455372.85"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.geomorph.2006.10.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002606583"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0025-3227(81)90156-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002956270"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0025-3227(81)90156-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002956270"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/02726358908906523", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005756644"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0378-3839(87)90033-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007758180"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0378-3839(87)90033-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007758180"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0957-0233/14/10/312", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019688466"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0032-5910(94)02823-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021594615"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0009-2509(99)00595-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022087877"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0032-5910(98)00146-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022503022"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s003480100356", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022702684", 
          "https://doi.org/10.1007/s003480100356"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01082551", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022928170", 
          "https://doi.org/10.1007/bf01082551"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01082551", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022928170", 
          "https://doi.org/10.1007/bf01082551"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00189052", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022931504", 
          "https://doi.org/10.1007/bf00189052"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0009-2509(03)00267-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023804645"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0009-2509(03)00267-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023804645"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00223247", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028928543", 
          "https://doi.org/10.1007/bf00223247"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.fluid.010908.165243", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029597440"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00348-002-0500-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029776648", 
          "https://doi.org/10.1007/s00348-002-0500-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00348-003-0703-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033309923", 
          "https://doi.org/10.1007/s00348-003-0703-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s003480050202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036498264", 
          "https://doi.org/10.1007/s003480050202"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijmultiphaseflow.2003.07.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037167364"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijmultiphaseflow.2003.07.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037167364"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1038285738", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-05165-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038285738", 
          "https://doi.org/10.1007/978-3-662-05165-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-05165-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038285738", 
          "https://doi.org/10.1007/978-3-662-05165-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2003gl017915", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044910006"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00348-004-0819-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047175514", 
          "https://doi.org/10.1007/s00348-004-0819-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1468-5248/3/1/001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047545719"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00348-001-0394-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051197614", 
          "https://doi.org/10.1007/s00348-001-0394-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2514/3.9154", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052714931"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s002211209200140x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053800365"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0022112095003521", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053860344"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0022112006000474", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053986099"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2728933", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057860916"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.868445", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058120626"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.1314864", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062067758"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1121/1.396153", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062347445"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1121/1.403967", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062355256"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012-03", 
    "datePublishedReg": "2012-03-01", 
    "description": "With the prevalence of particle image velocimetry (PIV) as a quantitative tool for fluid mechanics diagnostics, its application for analyzing complicated multiphase flows has been steadily increasing over the last several decades. While the primary issue in using PIV for multiphase flows is in separating the information of the phases for independent analysis with a minimum of spurious \u201ccross-talk,\u201d an equally crucial but often overlooked point is in the accurate quantitative measurement of the dispersed phase concentration. Accurate concentration measurement is important due to the fact that the dispersed phase is often heterogeneously distributed in both space and time, either due to a non-uniformity of the source of particulates (such as a spray nozzle or sediment boundary) or due to inertial migration of the particles even from originally homogeneous spatial distributions. In the current work, we examine the effects of light sheet profile distortion and attenuation by tracer seeding particles, as well as reflected light from local wall boundaries on the effective light sheet thickness. The effective thickness is critical for concentration measurements, as it dictates the dispersed phase detection volume. A direct calibration method is demonstrated to measure the effective light sheet thickness in a water/glass bead system, which shows that systematic bias errors on the order of 30% can result if the reflective bed condition is not accounted for, and the errors can be as high as 50% or more if a single-point measure of the sheet width is used.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00348-011-1100-8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3045277", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1042183", 
        "issn": [
          "0723-4864", 
          "1432-1114"
        ], 
        "name": "Experiments in Fluids", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "52"
      }
    ], 
    "name": "Quantification of dispersed phase concentration using light sheet imaging methods", 
    "pagination": "697-708", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "a40a0bf1f5290155ac669f6703447ac1c89655484f6e9ee5dbaa65a23333a04a"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00348-011-1100-8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1034436013"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00348-011-1100-8", 
      "https://app.dimensions.ai/details/publication/pub.1034436013"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T02:01", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000514.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs00348-011-1100-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00348-011-1100-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00348-011-1100-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00348-011-1100-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00348-011-1100-8'


 

This table displays all metadata directly associated to this object as RDF triples.

180 TRIPLES      21 PREDICATES      60 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00348-011-1100-8 schema:about anzsrc-for:09
2 anzsrc-for:0915
3 schema:author Na49f4975621b4bff9d7f4e1a9fe3ae6c
4 schema:citation sg:pub.10.1007/978-3-662-05165-8
5 sg:pub.10.1007/bf00189052
6 sg:pub.10.1007/bf00223247
7 sg:pub.10.1007/bf01082551
8 sg:pub.10.1007/s00348-001-0394-3
9 sg:pub.10.1007/s00348-002-0500-1
10 sg:pub.10.1007/s00348-003-0703-0
11 sg:pub.10.1007/s00348-004-0819-x
12 sg:pub.10.1007/s003480050202
13 sg:pub.10.1007/s003480100356
14 https://app.dimensions.ai/details/publication/pub.1038285738
15 https://doi.org/10.1016/0025-3227(81)90156-0
16 https://doi.org/10.1016/0032-5910(94)02823-0
17 https://doi.org/10.1016/0378-3839(87)90033-0
18 https://doi.org/10.1016/j.geomorph.2006.10.017
19 https://doi.org/10.1016/j.ijmultiphaseflow.2003.07.003
20 https://doi.org/10.1016/s0009-2509(03)00267-7
21 https://doi.org/10.1016/s0009-2509(99)00595-3
22 https://doi.org/10.1016/s0032-5910(98)00146-6
23 https://doi.org/10.1017/s0022112006000474
24 https://doi.org/10.1017/s002211209200140x
25 https://doi.org/10.1017/s0022112095003521
26 https://doi.org/10.1029/2003gl017915
27 https://doi.org/10.1063/1.2728933
28 https://doi.org/10.1063/1.868445
29 https://doi.org/10.1080/02726358908906523
30 https://doi.org/10.1088/0957-0233/14/10/312
31 https://doi.org/10.1088/1468-5248/3/1/001
32 https://doi.org/10.1115/1.1314864
33 https://doi.org/10.1121/1.396153
34 https://doi.org/10.1121/1.403967
35 https://doi.org/10.1146/annurev.fluid.010908.165243
36 https://doi.org/10.2514/3.9154
37 schema:datePublished 2012-03
38 schema:datePublishedReg 2012-03-01
39 schema:description With the prevalence of particle image velocimetry (PIV) as a quantitative tool for fluid mechanics diagnostics, its application for analyzing complicated multiphase flows has been steadily increasing over the last several decades. While the primary issue in using PIV for multiphase flows is in separating the information of the phases for independent analysis with a minimum of spurious “cross-talk,” an equally crucial but often overlooked point is in the accurate quantitative measurement of the dispersed phase concentration. Accurate concentration measurement is important due to the fact that the dispersed phase is often heterogeneously distributed in both space and time, either due to a non-uniformity of the source of particulates (such as a spray nozzle or sediment boundary) or due to inertial migration of the particles even from originally homogeneous spatial distributions. In the current work, we examine the effects of light sheet profile distortion and attenuation by tracer seeding particles, as well as reflected light from local wall boundaries on the effective light sheet thickness. The effective thickness is critical for concentration measurements, as it dictates the dispersed phase detection volume. A direct calibration method is demonstrated to measure the effective light sheet thickness in a water/glass bead system, which shows that systematic bias errors on the order of 30% can result if the reflective bed condition is not accounted for, and the errors can be as high as 50% or more if a single-point measure of the sheet width is used.
40 schema:genre research_article
41 schema:inLanguage en
42 schema:isAccessibleForFree false
43 schema:isPartOf N44c6bad508ee4edca64b90452145d53e
44 N4f771f6fee6e4627bcf6893ce9148483
45 sg:journal.1042183
46 schema:name Quantification of dispersed phase concentration using light sheet imaging methods
47 schema:pagination 697-708
48 schema:productId N64e12e5755864dcda3a87fd23088b72f
49 N8c6ed15006d6456883ac3127fc760333
50 N9805cb5335df40ff9b62236f97f266ae
51 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034436013
52 https://doi.org/10.1007/s00348-011-1100-8
53 schema:sdDatePublished 2019-04-11T02:01
54 schema:sdLicense https://scigraph.springernature.com/explorer/license/
55 schema:sdPublisher N2d923169fdf84326aa18136225b7c469
56 schema:url http://link.springer.com/10.1007%2Fs00348-011-1100-8
57 sgo:license sg:explorer/license/
58 sgo:sdDataset articles
59 rdf:type schema:ScholarlyArticle
60 N2d923169fdf84326aa18136225b7c469 schema:name Springer Nature - SN SciGraph project
61 rdf:type schema:Organization
62 N44c6bad508ee4edca64b90452145d53e schema:issueNumber 3
63 rdf:type schema:PublicationIssue
64 N4f771f6fee6e4627bcf6893ce9148483 schema:volumeNumber 52
65 rdf:type schema:PublicationVolume
66 N64e12e5755864dcda3a87fd23088b72f schema:name readcube_id
67 schema:value a40a0bf1f5290155ac669f6703447ac1c89655484f6e9ee5dbaa65a23333a04a
68 rdf:type schema:PropertyValue
69 N8c6ed15006d6456883ac3127fc760333 schema:name doi
70 schema:value 10.1007/s00348-011-1100-8
71 rdf:type schema:PropertyValue
72 N9805cb5335df40ff9b62236f97f266ae schema:name dimensions_id
73 schema:value pub.1034436013
74 rdf:type schema:PropertyValue
75 Na49f4975621b4bff9d7f4e1a9fe3ae6c rdf:first Nbc74184e592e4a24a0fbd55f3cbf89fc
76 rdf:rest Ne10fcf65801547a38b9ea17a617cd507
77 Nbc74184e592e4a24a0fbd55f3cbf89fc schema:affiliation https://www.grid.ac/institutes/grid.420427.7
78 schema:familyName Knowles
79 schema:givenName Philip L.
80 rdf:type schema:Person
81 Ne10fcf65801547a38b9ea17a617cd507 rdf:first sg:person.014607455372.85
82 rdf:rest rdf:nil
83 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
84 schema:name Engineering
85 rdf:type schema:DefinedTerm
86 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
87 schema:name Interdisciplinary Engineering
88 rdf:type schema:DefinedTerm
89 sg:grant.3045277 http://pending.schema.org/fundedItem sg:pub.10.1007/s00348-011-1100-8
90 rdf:type schema:MonetaryGrant
91 sg:journal.1042183 schema:issn 0723-4864
92 1432-1114
93 schema:name Experiments in Fluids
94 rdf:type schema:Periodical
95 sg:person.014607455372.85 schema:affiliation https://www.grid.ac/institutes/grid.164295.d
96 schema:familyName Kiger
97 schema:givenName Ken T.
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014607455372.85
99 rdf:type schema:Person
100 sg:pub.10.1007/978-3-662-05165-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038285738
101 https://doi.org/10.1007/978-3-662-05165-8
102 rdf:type schema:CreativeWork
103 sg:pub.10.1007/bf00189052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022931504
104 https://doi.org/10.1007/bf00189052
105 rdf:type schema:CreativeWork
106 sg:pub.10.1007/bf00223247 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028928543
107 https://doi.org/10.1007/bf00223247
108 rdf:type schema:CreativeWork
109 sg:pub.10.1007/bf01082551 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022928170
110 https://doi.org/10.1007/bf01082551
111 rdf:type schema:CreativeWork
112 sg:pub.10.1007/s00348-001-0394-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051197614
113 https://doi.org/10.1007/s00348-001-0394-3
114 rdf:type schema:CreativeWork
115 sg:pub.10.1007/s00348-002-0500-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029776648
116 https://doi.org/10.1007/s00348-002-0500-1
117 rdf:type schema:CreativeWork
118 sg:pub.10.1007/s00348-003-0703-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033309923
119 https://doi.org/10.1007/s00348-003-0703-0
120 rdf:type schema:CreativeWork
121 sg:pub.10.1007/s00348-004-0819-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1047175514
122 https://doi.org/10.1007/s00348-004-0819-x
123 rdf:type schema:CreativeWork
124 sg:pub.10.1007/s003480050202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036498264
125 https://doi.org/10.1007/s003480050202
126 rdf:type schema:CreativeWork
127 sg:pub.10.1007/s003480100356 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022702684
128 https://doi.org/10.1007/s003480100356
129 rdf:type schema:CreativeWork
130 https://app.dimensions.ai/details/publication/pub.1038285738 schema:CreativeWork
131 https://doi.org/10.1016/0025-3227(81)90156-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002956270
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/0032-5910(94)02823-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021594615
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/0378-3839(87)90033-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007758180
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/j.geomorph.2006.10.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002606583
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/j.ijmultiphaseflow.2003.07.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037167364
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/s0009-2509(03)00267-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023804645
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/s0009-2509(99)00595-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022087877
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/s0032-5910(98)00146-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022503022
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1017/s0022112006000474 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053986099
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1017/s002211209200140x schema:sameAs https://app.dimensions.ai/details/publication/pub.1053800365
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1017/s0022112095003521 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053860344
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1029/2003gl017915 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044910006
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1063/1.2728933 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057860916
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1063/1.868445 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058120626
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1080/02726358908906523 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005756644
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1088/0957-0233/14/10/312 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019688466
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1088/1468-5248/3/1/001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047545719
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1115/1.1314864 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062067758
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1121/1.396153 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062347445
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1121/1.403967 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062355256
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1146/annurev.fluid.010908.165243 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029597440
172 rdf:type schema:CreativeWork
173 https://doi.org/10.2514/3.9154 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052714931
174 rdf:type schema:CreativeWork
175 https://www.grid.ac/institutes/grid.164295.d schema:alternateName University of Maryland, College Park
176 schema:name Department of Mechanical Engineering, University of Maryland, College Park, MD, USA
177 rdf:type schema:Organization
178 https://www.grid.ac/institutes/grid.420427.7 schema:alternateName Naval Air Systems Command
179 schema:name Applied Aerodynamics & Store Separation Branch, NAVAIR, Patuxent River, MD, USA
180 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...