Quantitative visualization of compressible turbulent shear flows using condensate-enhanced Rayleigh scattering View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2004-09

AUTHORS

J. Poggie, P. J. Erbland, A. J. Smits, R. B. Miles

ABSTRACT

This paper describes several flow visualization experiments carried out in Mach 3 and Mach 8 turbulent shear flows. The experimental technique was based on laser scattering from particles of H2O or CO2 condensate that form in the wind tunnel nozzle expansion process. The condensate particles vaporize extremely rapidly on entering the relatively hot fluid within a turbulent structure, so that a sharp vaporization interface marks the outer edge of the rotational shear layer fluid. Calculations indicate that the observed thin interface corresponds to a particle size of 10 nm or less, which is consistent with optical measurements, and that particles of this size track the fluid motions well. Further, calculations and experiments show that the freestream concentration of condensate required for flow visualization has only a small effect on the wind tunnel pressure distribution. Statistics based on the image data were compared to corresponding results from probe measurements and agreement was obtained in statistical measures of speed, scale, and orientation of the large-scale structures in the shear layer turbulence. The condensate-enhanced Rayleigh scattering technique is judged to be a useful tool for quantitative studies of shear layer structure, particularly for identifying the instantaneous boundary layer edge and for extracting comparative information on the large-scale structures represented there. More... »

PAGES

438-454

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00348-004-0828-9

DOI

http://dx.doi.org/10.1007/s00348-004-0828-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1025235950


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Wright-Patterson Air Force Base", 
          "id": "https://www.grid.ac/institutes/grid.448385.6", 
          "name": [
            "Aeronautical Sciences Division, Air Vehicles Directorate, Air Force Research Laboratory, 45433, Wright-Patterson AFB, Ohio, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Poggie", 
        "givenName": "J.", 
        "id": "sg:person.012140745007.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012140745007.47"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Wright-Patterson Air Force Base", 
          "id": "https://www.grid.ac/institutes/grid.448385.6", 
          "name": [
            "Aeronautical Sciences Division, Air Vehicles Directorate, Air Force Research Laboratory, 45433, Wright-Patterson AFB, Ohio, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Erbland", 
        "givenName": "P. J.", 
        "id": "sg:person.016041303177.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016041303177.84"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Princeton University", 
          "id": "https://www.grid.ac/institutes/grid.16750.35", 
          "name": [
            "Department of Mechanical and Aerospace Engineering, Princeton University, 08544, Princeton, New Jersey, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Smits", 
        "givenName": "A. J.", 
        "id": "sg:person.012602554201.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012602554201.61"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Princeton University", 
          "id": "https://www.grid.ac/institutes/grid.16750.35", 
          "name": [
            "Department of Mechanical and Aerospace Engineering, Princeton University, 08544, Princeton, New Jersey, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Miles", 
        "givenName": "R. B.", 
        "id": "sg:person.01364564235.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01364564235.46"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.2514/2.6840", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001557938"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2514/3.10193", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001601912"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00195099", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002872329", 
          "https://doi.org/10.1007/bf00195099"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.fl.26.010194.001443", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003072082"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2514/3.51135", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009795699"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2514/3.10570", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010544407"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00196982", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013349224", 
          "https://doi.org/10.1007/bf00196982"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2514/3.51049", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014964521"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2514/3.11788", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023430953"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2514/6.1975-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025912072"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2514/3.48490", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031265533"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.fl.23.010191.003125", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031597351"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00266260", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033616172", 
          "https://doi.org/10.1007/bf00266260"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00266260", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033616172", 
          "https://doi.org/10.1007/bf00266260"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0894-1777(93)90005-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040854789"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0894-1777(93)90005-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040854789"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2514/3.59935", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041218807"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2514/6.1991-651", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046640981"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0022112087002258", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053746939"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0022112091001118", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053823567"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s002211200000269x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053964190"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1693796", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057765576"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.857921", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058111126"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.858128", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058111333"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.861721", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058114919"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.868609", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058120787"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ol.14.000916", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065212307"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2004-09", 
    "datePublishedReg": "2004-09-01", 
    "description": "This paper describes several flow visualization experiments carried out in Mach 3 and Mach 8 turbulent shear flows. The experimental technique was based on laser scattering from particles of H2O or CO2 condensate that form in the wind tunnel nozzle expansion process. The condensate particles vaporize extremely rapidly on entering the relatively hot fluid within a turbulent structure, so that a sharp vaporization interface marks the outer edge of the rotational shear layer fluid. Calculations indicate that the observed thin interface corresponds to a particle size of 10 nm or less, which is consistent with optical measurements, and that particles of this size track the fluid motions well. Further, calculations and experiments show that the freestream concentration of condensate required for flow visualization has only a small effect on the wind tunnel pressure distribution. Statistics based on the image data were compared to corresponding results from probe measurements and agreement was obtained in statistical measures of speed, scale, and orientation of the large-scale structures in the shear layer turbulence. The condensate-enhanced Rayleigh scattering technique is judged to be a useful tool for quantitative studies of shear layer structure, particularly for identifying the instantaneous boundary layer edge and for extracting comparative information on the large-scale structures represented there.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00348-004-0828-9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1042183", 
        "issn": [
          "0723-4864", 
          "1432-1114"
        ], 
        "name": "Experiments in Fluids", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "37"
      }
    ], 
    "name": "Quantitative visualization of compressible turbulent shear flows using condensate-enhanced Rayleigh scattering", 
    "pagination": "438-454", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "783957cf524e39051106aa500e6256e63c5b0c501feff56b2a1dcc294e70bf34"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00348-004-0828-9"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1025235950"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00348-004-0828-9", 
      "https://app.dimensions.ai/details/publication/pub.1025235950"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T14:29", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000373_0000000373/records_13087_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs00348-004-0828-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00348-004-0828-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00348-004-0828-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00348-004-0828-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00348-004-0828-9'


 

This table displays all metadata directly associated to this object as RDF triples.

163 TRIPLES      21 PREDICATES      52 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00348-004-0828-9 schema:about anzsrc-for:09
2 anzsrc-for:0915
3 schema:author N8055243a08e7436c8bec8f65508a332c
4 schema:citation sg:pub.10.1007/bf00195099
5 sg:pub.10.1007/bf00196982
6 sg:pub.10.1007/bf00266260
7 https://doi.org/10.1016/0894-1777(93)90005-4
8 https://doi.org/10.1017/s002211200000269x
9 https://doi.org/10.1017/s0022112087002258
10 https://doi.org/10.1017/s0022112091001118
11 https://doi.org/10.1063/1.1693796
12 https://doi.org/10.1063/1.857921
13 https://doi.org/10.1063/1.858128
14 https://doi.org/10.1063/1.861721
15 https://doi.org/10.1063/1.868609
16 https://doi.org/10.1146/annurev.fl.23.010191.003125
17 https://doi.org/10.1146/annurev.fl.26.010194.001443
18 https://doi.org/10.1364/ol.14.000916
19 https://doi.org/10.2514/2.6840
20 https://doi.org/10.2514/3.10193
21 https://doi.org/10.2514/3.10570
22 https://doi.org/10.2514/3.11788
23 https://doi.org/10.2514/3.48490
24 https://doi.org/10.2514/3.51049
25 https://doi.org/10.2514/3.51135
26 https://doi.org/10.2514/3.59935
27 https://doi.org/10.2514/6.1975-7
28 https://doi.org/10.2514/6.1991-651
29 schema:datePublished 2004-09
30 schema:datePublishedReg 2004-09-01
31 schema:description This paper describes several flow visualization experiments carried out in Mach 3 and Mach 8 turbulent shear flows. The experimental technique was based on laser scattering from particles of H2O or CO2 condensate that form in the wind tunnel nozzle expansion process. The condensate particles vaporize extremely rapidly on entering the relatively hot fluid within a turbulent structure, so that a sharp vaporization interface marks the outer edge of the rotational shear layer fluid. Calculations indicate that the observed thin interface corresponds to a particle size of 10 nm or less, which is consistent with optical measurements, and that particles of this size track the fluid motions well. Further, calculations and experiments show that the freestream concentration of condensate required for flow visualization has only a small effect on the wind tunnel pressure distribution. Statistics based on the image data were compared to corresponding results from probe measurements and agreement was obtained in statistical measures of speed, scale, and orientation of the large-scale structures in the shear layer turbulence. The condensate-enhanced Rayleigh scattering technique is judged to be a useful tool for quantitative studies of shear layer structure, particularly for identifying the instantaneous boundary layer edge and for extracting comparative information on the large-scale structures represented there.
32 schema:genre research_article
33 schema:inLanguage en
34 schema:isAccessibleForFree false
35 schema:isPartOf N14d6f778411c4eaf8509415fc3ae9923
36 Nf4d0c612721c44d8bbe9e063d88cc25e
37 sg:journal.1042183
38 schema:name Quantitative visualization of compressible turbulent shear flows using condensate-enhanced Rayleigh scattering
39 schema:pagination 438-454
40 schema:productId N035023770f1b4b2586b4cdb5541371e7
41 Nc39d6105990f4a26bc0d67b15625f8ad
42 Ndfafe0e1f5da4d3aa297777ea7fce016
43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025235950
44 https://doi.org/10.1007/s00348-004-0828-9
45 schema:sdDatePublished 2019-04-11T14:29
46 schema:sdLicense https://scigraph.springernature.com/explorer/license/
47 schema:sdPublisher N05ecd52abeb54a3bb23ed55d46751768
48 schema:url http://link.springer.com/10.1007%2Fs00348-004-0828-9
49 sgo:license sg:explorer/license/
50 sgo:sdDataset articles
51 rdf:type schema:ScholarlyArticle
52 N035023770f1b4b2586b4cdb5541371e7 schema:name doi
53 schema:value 10.1007/s00348-004-0828-9
54 rdf:type schema:PropertyValue
55 N05ecd52abeb54a3bb23ed55d46751768 schema:name Springer Nature - SN SciGraph project
56 rdf:type schema:Organization
57 N0e63f10575d041a1984dd31c3022d946 rdf:first sg:person.016041303177.84
58 rdf:rest N202ab88954b445cca4be5e80a419e31d
59 N14d6f778411c4eaf8509415fc3ae9923 schema:volumeNumber 37
60 rdf:type schema:PublicationVolume
61 N202ab88954b445cca4be5e80a419e31d rdf:first sg:person.012602554201.61
62 rdf:rest N8a74e842175b4f9ca48ca055205c4bd6
63 N8055243a08e7436c8bec8f65508a332c rdf:first sg:person.012140745007.47
64 rdf:rest N0e63f10575d041a1984dd31c3022d946
65 N8a74e842175b4f9ca48ca055205c4bd6 rdf:first sg:person.01364564235.46
66 rdf:rest rdf:nil
67 Nc39d6105990f4a26bc0d67b15625f8ad schema:name readcube_id
68 schema:value 783957cf524e39051106aa500e6256e63c5b0c501feff56b2a1dcc294e70bf34
69 rdf:type schema:PropertyValue
70 Ndfafe0e1f5da4d3aa297777ea7fce016 schema:name dimensions_id
71 schema:value pub.1025235950
72 rdf:type schema:PropertyValue
73 Nf4d0c612721c44d8bbe9e063d88cc25e schema:issueNumber 3
74 rdf:type schema:PublicationIssue
75 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
76 schema:name Engineering
77 rdf:type schema:DefinedTerm
78 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
79 schema:name Interdisciplinary Engineering
80 rdf:type schema:DefinedTerm
81 sg:journal.1042183 schema:issn 0723-4864
82 1432-1114
83 schema:name Experiments in Fluids
84 rdf:type schema:Periodical
85 sg:person.012140745007.47 schema:affiliation https://www.grid.ac/institutes/grid.448385.6
86 schema:familyName Poggie
87 schema:givenName J.
88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012140745007.47
89 rdf:type schema:Person
90 sg:person.012602554201.61 schema:affiliation https://www.grid.ac/institutes/grid.16750.35
91 schema:familyName Smits
92 schema:givenName A. J.
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012602554201.61
94 rdf:type schema:Person
95 sg:person.01364564235.46 schema:affiliation https://www.grid.ac/institutes/grid.16750.35
96 schema:familyName Miles
97 schema:givenName R. B.
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01364564235.46
99 rdf:type schema:Person
100 sg:person.016041303177.84 schema:affiliation https://www.grid.ac/institutes/grid.448385.6
101 schema:familyName Erbland
102 schema:givenName P. J.
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016041303177.84
104 rdf:type schema:Person
105 sg:pub.10.1007/bf00195099 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002872329
106 https://doi.org/10.1007/bf00195099
107 rdf:type schema:CreativeWork
108 sg:pub.10.1007/bf00196982 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013349224
109 https://doi.org/10.1007/bf00196982
110 rdf:type schema:CreativeWork
111 sg:pub.10.1007/bf00266260 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033616172
112 https://doi.org/10.1007/bf00266260
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1016/0894-1777(93)90005-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040854789
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1017/s002211200000269x schema:sameAs https://app.dimensions.ai/details/publication/pub.1053964190
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1017/s0022112087002258 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053746939
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1017/s0022112091001118 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053823567
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1063/1.1693796 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057765576
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1063/1.857921 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058111126
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1063/1.858128 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058111333
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1063/1.861721 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058114919
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1063/1.868609 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058120787
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1146/annurev.fl.23.010191.003125 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031597351
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1146/annurev.fl.26.010194.001443 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003072082
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1364/ol.14.000916 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065212307
137 rdf:type schema:CreativeWork
138 https://doi.org/10.2514/2.6840 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001557938
139 rdf:type schema:CreativeWork
140 https://doi.org/10.2514/3.10193 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001601912
141 rdf:type schema:CreativeWork
142 https://doi.org/10.2514/3.10570 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010544407
143 rdf:type schema:CreativeWork
144 https://doi.org/10.2514/3.11788 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023430953
145 rdf:type schema:CreativeWork
146 https://doi.org/10.2514/3.48490 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031265533
147 rdf:type schema:CreativeWork
148 https://doi.org/10.2514/3.51049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014964521
149 rdf:type schema:CreativeWork
150 https://doi.org/10.2514/3.51135 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009795699
151 rdf:type schema:CreativeWork
152 https://doi.org/10.2514/3.59935 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041218807
153 rdf:type schema:CreativeWork
154 https://doi.org/10.2514/6.1975-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025912072
155 rdf:type schema:CreativeWork
156 https://doi.org/10.2514/6.1991-651 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046640981
157 rdf:type schema:CreativeWork
158 https://www.grid.ac/institutes/grid.16750.35 schema:alternateName Princeton University
159 schema:name Department of Mechanical and Aerospace Engineering, Princeton University, 08544, Princeton, New Jersey, USA
160 rdf:type schema:Organization
161 https://www.grid.ac/institutes/grid.448385.6 schema:alternateName Wright-Patterson Air Force Base
162 schema:name Aeronautical Sciences Division, Air Vehicles Directorate, Air Force Research Laboratory, 45433, Wright-Patterson AFB, Ohio, USA
163 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...